精英家教网 > 高中数学 > 题目详情
1.如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m.经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=$\frac{4}{3}$.
(1)求新桥BC的长;
(2)当OM多长时,圆形保护区的面积最大?

分析 (1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;
(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.

解答 解:(1)如图,

过B作BE⊥OC于E,过A作AF⊥BE于F,
∵∠ABC=90°,∠BEC=90°,
∴∠ABF=∠BCE,
∴tan∠ABF=tan∠BCO=$\frac{4}{3}$.
设AF=4x(m),则BF=3x(m).
∵∠AOE=∠AFE=∠OEF=90°,
∴OE=AF=4x(m),EF=AO=60(m),
∴BE=(3x+60)m.
∵tan∠BCO=$\frac{4}{3}$,
∴CE=$\frac{3}{4}$BE=($\frac{9}{4}$x+45)(m).
∴OC=(4x+$\frac{9}{4}$x+45(m).
∴4x+$\frac{9}{4}$x+45=170,
解得:x=20.
∴BE=120m,CE=90m,
则BC=150m;
(2)如图,

设BC与⊙M切于Q,延长QM、CO交于P,
∵∠POM=∠PQC=90°,
∴∠PMO=∠BCO.
设OM=xm,则OP=$\frac{4}{3}$xm,PM=$\frac{5}{3}$xm.
∴PC=($\frac{4}{3}$x+170)m,PQ=($\frac{16}{15}$x+136)m.
设⊙M半径为R,
∴R=MQ=($\frac{16}{15}$x+136-$\frac{5}{3}$x)m=(136-$\frac{3}{5}$x)m.
∵A、O到⊙M上任一点距离不少于80m,
则R-AM≥80,R-OM≥80,
∴136-$\frac{3}{5}$-(60-x)≥80,136-$\frac{3}{5}$-x≥80.
解得:10≤x≤35.
∴当且仅当x=10时R取到最大值.
∴OM=10m时,保护区面积最大.

点评 本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知α,β∈(0,$\frac{π}{2}$),满足tan(α+β)=4tanβ,则tanα的最大值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各函数中,最小值为2的是(  )
A.$y=x+\frac{1}{x}$B.$y=sinx+\frac{1}{sinx},x∈(0,\frac{π}{2})$
C.$y=\frac{{{x^2}+2}}{{\sqrt{{x^2}+1}}}$D.$y=x+\frac{2}{{\sqrt{x}}}-2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-1-lnx (a∈R).
(Ⅰ) 讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ) 若a=1时,对于?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=x2+3x+1.则f(x)=x2+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点P(m,n)在直线x+y-4=0上运动,则m2+n2的最小值为(  )
A.$8\sqrt{2}$B.8C.$4\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点,且PA=AC=2,AB=2$\sqrt{3}$.
(1)求证:平面PAC⊥平面PBC;
(2)求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数2-3i对应的点在直线(  )
A.y=x上B.y=-x上C.3x+2y=0上D.2x+3y=0上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2sinx(sinx+cosx).
(1)求f(x)的最小正周期.
(2)求函数在区间[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

同步练习册答案