精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{1-x}{ax}$+lnx.
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值.
(3)求证:对于大于1的正整数n,ln$\frac{n}{n-1}$>$\frac{1}{n}$.

分析 (1)f(x)在[1,+∞)上为增函数,等价于$\frac{ax-1}{a{x}^{2}}≥0$即ax-1≥0对x∈[1,+∞)恒成立,分离参数后化为函数的最值即可求解;
(2)先求出函数的导函数以及导数为0的根,进而求出其在[$\frac{1}{2}$,2]上的单调性即可求f(x)在[$\frac{1}{2}$,2]上的最大值和最小值.
(3)由(1)知f (x)=$\frac{1-x}{x}+lnx$在[1,+∞)上为增函数,当n>1时,令x=$\frac{n}{n-1}$,则x>1,故f (x)>f (1)=0,即f ($\frac{n}{n-1}$)=$\frac{1-\frac{n}{n-1}}{\frac{n}{n-1}}$+ln$\frac{n}{n-1}$=-$\frac{1}{n}$+ln$\frac{n}{n-1}$>0即可.

解答 解:(1)解:(Ⅰ)由已知得f′(x)=$\frac{ax-1}{a{x}^{2}}$,
依题意:$\frac{ax-1}{a{x}^{2}}≥0$对x∈[1,+∞)恒成立,即:ax-1≥0对x∈[1,+∞)恒成立,
也即:a$≥\frac{1}{x}$对x∈[1,+∞)恒成立,
∴a$≥(\frac{1}{x})_{max}$,即a≥1;
(2)(Ⅱ)当a=1时,f'(x)=$\frac{x-1}{{x}^{2}}$.
当x∈[$\frac{1}{2}$,1)时,f'(x)<0,故f(x)在x∈[$\frac{1}{2}$,1)上单调递减;
当x∈[1,2]时,f'(x)>0,f(x)在x∈[1,2]上单调递增.
∴f(x)在x∈[$\frac{1}{2}$,2]上有唯一极小值点,
故f(x)min=f(x)极小值=f(1)=0,
又f ($\frac{1}{2}$)-f (2)=$\frac{3}{2}$-2ln2=$\frac{ln{e}^{3}-ln{2}^{4}}{2}$>0,∴f ($\frac{1}{2}$)>f (2),∴[f (x)]max=f ($\frac{1}{2}$)=1-ln2;
(3)由(1)知f (x)=$\frac{1-x}{x}+lnx$在[1,+∞)上为增函数,当n>1时,令x=$\frac{n}{n-1}$,则x>1,故f (x)>f (1)=0,
即f ($\frac{n}{n-1}$)=$\frac{1-\frac{n}{n-1}}{\frac{n}{n-1}}$+ln$\frac{n}{n-1}$=-$\frac{1}{n}$+ln$\frac{n}{n-1}$>0,∴ln$\frac{n}{n-1}$>$\frac{1}{n}$

点评 本题考查了导数的综合应用,考查了分离参数法、构造法证明数列不等式,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(3,x),若$\overrightarrow{a}$•$\overrightarrow{b}$=3,则x=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列关于命题的说法错误的是(  )
A.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
B.命题“若随机变量X~N(1,4),P(X≤0)=m,则P(0<X<2)=1-2m”为真命题
C.命题“若x2-3x+2=0,则x=2”的逆否命题为“若x≠2,则x2-3x+2≠0”
D.若命题P:?n∈N,2n>1000,则?P:?n∈N,2n>1000

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.规定:点P(x,y)按向量$\overrightarrow n=(a,b)$平移后的点为Q(x+a,y+b).若函数$g(x)=sin\frac{1}{2}x$的图象按向量$\overrightarrow{m}$=(j,k)且|j|$<\frac{p}{2}$平移后的图象对应的函数是$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$+1.
(1)试求向量$\overrightarrow m$的坐标;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,已知f(2A)+2cos(B+C)=1,
①求角A的大小;   ②若a=6,求b+c的取值范围.
另外:最后一小题也可用“余弦定理结合基本不等式”求解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,且过点$({1,\frac{{\sqrt{3}}}{2}})$.
(1)求E的方程;
(2)是否存在直线l:y=kx+m(k>0)与E相交于P,Q两点,且满足①OP与OQ(O为坐标原点)的斜率之和为2;②直线l与圆x2+y2=1相切.若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对某产品1至6月份销售量及其价格进行调查,其售价x和销售量y之间的一组数据如表所示:
月份i123456
单价xi(元)99.51010.5118
销售量yi(件)111086514
(1)根据1至5月份的数据,求解y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到
的回归方程是理想的,试问所得回归方程是否理想?
参考公式:回归直线的方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,
其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对于任意向量$\overrightarrow{a},\overrightarrow{b}$,下列命题中正确的是(  )
A.若$\overrightarrow{a},\overrightarrow{b}$满足|$\overrightarrow{a}$|>|$\overrightarrow{b}$|,且$\overrightarrow{a}$与$\overrightarrow{b}$同向,则$\overrightarrow{a}$>$\overrightarrow{b}$B.|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|
C.|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|D.|$\overrightarrow{a}$-$\overrightarrow{b}$|≤|$\overrightarrow{a}$|-|$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,一个6×5的矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA=PE=5.
(1)证明:BC⊥PB;
(2)求二面角B-PC-D的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要条件
C.“若tanα≠$\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

同步练习册答案