精英家教网 > 高中数学 > 题目详情
15.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要条件
C.“若tanα≠$\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

分析 A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”;
B,由“x>2”可以得到“$\frac{1}{x}<\frac{1}{2}$”,由“$\frac{1}{x}<\frac{1}{2}$”不能推出”x>2”
C,若tanα≠$\sqrt{3}$,则$α≠kπ+\frac{π}{3}$,则$α≠\frac{π}{3}$;
D,当x0∈(-∞,0)时,$(\frac{3}{4})^{{x}_{0}}>1$,3${\;}^{{x}_{0}}$>4${\;}^{{x}_{0}}$;

解答 解:对于A,“若a>1,则a2>1”的否命题是“若a≤1,则a2≤1”,故错;
对于B,由“x>2”可以得到“$\frac{1}{x}<\frac{1}{2}$”,由“$\frac{1}{x}<\frac{1}{2}$”不能推出”x>2”,故错;
对于C,若tanα≠$\sqrt{3}$,则$α≠kπ+\frac{π}{3}$,则$α≠\frac{π}{3}$,故正确;
对于D,∵当x0∈(-∞,0)时,$(\frac{3}{4})^{{x}_{0}}>1$,∴3${\;}^{{x}_{0}}$>4${\;}^{{x}_{0}}$,故错;
故选:C

点评 本题考查了命题真假的判定,涉及到充要条件、命题的否命题等基础知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{1-x}{ax}$+lnx.
(1)若函数f(x)在[1,+∞)上为增函数,求正实数a的取值范围;
(2)当a=1时,求f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值.
(3)求证:对于大于1的正整数n,ln$\frac{n}{n-1}$>$\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知下列四个命题:
①命题“若α=$\frac{π}{4}$,则tanα=1”的逆否命题为假命题;
②命题p:?x∈R,sinx≤1,则¬p:?x0∈R,使sinx0>1;
③“sinθ=$\frac{1}{2}$”是“θ=30°”的充分不必要条件
④命题p:“?x0∈R,使sinx0+cosx0=$\frac{3}{2}$”;命题q:“若sinα>sinβ,则α>β”,那么(¬p)∧q为真命题.
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数列{an}的通项an=n(cos2$\frac{nπ}{4}$-sin2$\frac{nπ}{4}$),其前n项和为Sn,则S10为(  )
A.10B.15C.-6D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知A(-1,0)、B(1,0),以AB为一腰作使∠DAB=90°直角梯形ABCD,且|AD|=3|BC|,CD中点的纵坐标为1.若椭圆以A、B为焦点且经过点D,则此椭圆的方程为(  )
A.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,a,b,c分别为内角A,B,C的对边,若a=2,$C=\frac{π}{4}$,$cos\frac{B}{2}=\frac{{2\sqrt{5}}}{5}$,
(1)求sinA;
(2)求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x≥4,函数y=$\frac{4}{x}$+x的最小值是(  )
A.5B.4C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若二次函数y=f(x)在x=2处取最大值,则(  )
A.f(x-2)一定为奇函数B.f(x-2)一定为偶函数
C.f(x+2)一定为奇函数D.f(x+2)一定为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)与g(x)的定义域为[m,n],它们的图象如图所示,则不等式f(x)g(x)<0的解集是{x|x∈(m,a)∪(a,b)∪(c,d)}.

查看答案和解析>>

同步练习册答案