精英家教网 > 高中数学 > 题目详情
3.数列{an}的通项an=n(cos2$\frac{nπ}{4}$-sin2$\frac{nπ}{4}$),其前n项和为Sn,则S10为(  )
A.10B.15C.-6D.25

分析 an=n(cos2$\frac{nπ}{4}$-sin2$\frac{nπ}{4}$)=$ncos\frac{nπ}{2}$,对n分类讨论:n=2k-1(k∈N*)时,a2k-1=0;n=4k(k∈N*)时,a4k=n;n=4k-2(k∈N*)时,a4k=-n.即可得出.

解答 解:an=n(cos2$\frac{nπ}{4}$-sin2$\frac{nπ}{4}$)=$ncos\frac{nπ}{2}$,
∴n=2k-1(k∈N*)时,a2k-1=0;n=4k(k∈N*)时,a4k=n;n=4k-2(k∈N*)时,a4k=-n.
∴S10=0-2-6-10+4+8=-6.
故选:C.

点评 本题考查了数列递推关系、分组求和、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.规定:点P(x,y)按向量$\overrightarrow n=(a,b)$平移后的点为Q(x+a,y+b).若函数$g(x)=sin\frac{1}{2}x$的图象按向量$\overrightarrow{m}$=(j,k)且|j|$<\frac{p}{2}$平移后的图象对应的函数是$f(x)=sin(\frac{1}{2}x+\frac{π}{6})$+1.
(1)试求向量$\overrightarrow m$的坐标;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,已知f(2A)+2cos(B+C)=1,
①求角A的大小;   ②若a=6,求b+c的取值范围.
另外:最后一小题也可用“余弦定理结合基本不等式”求解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,一个6×5的矩形AB′DE(AE=6,DE=5),被截去一角(即△BB′C),AB=3,∠ABC=135°,平面PAE⊥平面ABCDE,PA=PE=5.
(1)证明:BC⊥PB;
(2)求二面角B-PC-D的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则a,b,c的大小关系是a<c<b,a+b+c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.等边三角形ABC的三个顶点在抛物线y2=4x上,其中点A重合于坐标原点,求△ABC的边长|BC|和它的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=2sin({ωx+\frac{π}{3}}),({ω<0})$的最小正周期为π,求函数f(x)的单调递增区间和函数取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.“若a>1,则a2>1”的否命题是“若a>1,则a2≤1”
B.“x>2”是“$\frac{1}{x}<\frac{1}{2}$”的充要条件
C.“若tanα≠$\sqrt{3}$,则$α≠\frac{π}{3}$”是真命题
D.?x0∈(-∞,0),使得3${\;}^{{x}_{0}}$<4${\;}^{{x}_{0}}$成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{lnx}{x}-1$.
(I)求函数f(x)的单调区间;
(II)设m>0,若函数g(x)=2xf(x)-x2+2x+m在$[{\frac{1}{e},e}]$上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知三角形ABC中,角A,B,C成等差数列,且$2sinCcosA+\sqrt{3}sinA=2sinB,AD$为角A的内角平分线,$AD=\sqrt{6}$.
(1)求三角形内角C的大小;
(2)求△ABC面积的S.

查看答案和解析>>

同步练习册答案