精英家教网 > 高中数学 > 题目详情
20.设实数x,y满足:$\left\{\begin{array}{l}{2x+y≤4}\\{x-2y≤2}\\{x-y≥1}\end{array}\right.$,O为坐标原点,则x2+y2的最小值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

分析 先画出满足条件的平面区域,根据x2+y2的最小值是O点到直线x-y=1距离的平方,结合点到直线的距离公式,求出即可.

解答 解:画出满足条件的平面区域,如图示:

∴x2+y2的最小值是O点到直线x-y=1距离的平方,
而|OP|=$\frac{1}{\sqrt{1+1}}$=$\frac{1}{\sqrt{2}}$,
即x2+y2的最小值是$\frac{1}{2}$,
故选:B.

点评 本题考查了简单的线性规划问题,考查点到直线的距离公式,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数${f_n}(x)=n{log_2}({x+2}),{g_n}(x)={({\frac{1}{2}})^{{f_n}(x)}}({n∈{N^+}})$,a>0.
(1)确定实数a的取值范围,使得命题M:集合A={x|f1(x)=f2(x-2+a)}≠∅为真命题;
(2)确定实数a的取值范围;使得命题N:当F(x)=g1(x)-f1(x),x∈$[{-\frac{3}{2},-1}]$时,集合Q={x|x+|x-2a|>F(x)min}=R为真命题;
(3)如果M和N有且仅有一个为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$,则<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在复平面内,复数z满足(2-i)•z=i3(i为虚数单位),则复数z表示的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设α为锐角,若sin(α-$\frac{π}{4}$)=$\frac{1}{3}$,则cos2α=-$\frac{4\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若四边形ABCD满足:$\overrightarrow{AB}$+$\overrightarrow{CD}$=0,($\overrightarrow{AB}$+$\overrightarrow{DA}$)•$\overrightarrow{AC}$=0,则该四边形一定是(  )
A.矩形B.正方形C.菱形D.直角梯形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有1000个形状相同的球,其中红球500个,黄球300个,绿球200个,采用按颜色分层抽样的方法随机抽取100个球进行分析,则应抽取红球的个数为(  )
A.20个B.30个C.50个D.100个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)满足f(x)>4,则f(x)的最小值是(  )
A.4B.f(4)C.4.001D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知全集U=R,A={x|4<x<6},B={x|5<x<7},求∁uA,∁uB,A∩B,∁uA=∁uB,∁u(A∪B)

查看答案和解析>>

同步练习册答案