| A. | $\frac{1}{9}$ | B. | $\frac{1}{3}$ | C. | 1 | D. | 3 |
分析 由题意可知:$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AC}$,设$\overrightarrow{BP}$=λ$\overrightarrow{BN}$,$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$=(1-λ)$\overrightarrow{AB}$+$\frac{λ}{4}$$\overrightarrow{AC}$,由$\overrightarrow{AP}=({m+\frac{2}{9}})\overrightarrow{AB}+\frac{2}{9}\overrightarrow{BC}$=m$\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$,根据向量相等可知:$\left\{\begin{array}{l}{\frac{λ}{4}=\frac{2}{9}}\\{1-λ=m}\end{array}\right.$,即可求得m的值.
解答 解:N为线段AC上接近A点的四等分点,
∴$\overrightarrow{AN}$=$\frac{1}{4}$$\overrightarrow{AC}$,
设$\overrightarrow{BP}$=λ$\overrightarrow{BN}$,则$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$=$\overrightarrow{AB}$+λ($\overrightarrow{AN}$-$\overrightarrow{AB}$)=(1-λ)$\overrightarrow{AB}$+λ$\overrightarrow{AN}$=(1-λ)$\overrightarrow{AB}$+$\frac{λ}{4}$$\overrightarrow{AC}$,
∵$\overrightarrow{AP}=({m+\frac{2}{9}})\overrightarrow{AB}+\frac{2}{9}\overrightarrow{BC}$=m$\overrightarrow{AB}$+$\frac{2}{9}$$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{\frac{λ}{4}=\frac{2}{9}}\\{1-λ=m}\end{array}\right.$,即λ=$\frac{8}{9}$,m=$\frac{1}{9}$,
故答案选:A.
点评 本题考查平面向量的基本定理及其意义,考查向量加法的三角形法则及两个向量相等的充要条件,考查数形结合思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | V=$\frac{1}{3}$abc(a,b,c为地面边长) | |
| B. | V=$\frac{1}{3}$sh(s为地面面积,h为四面体的高) | |
| C. | V=$\frac{1}{3}$(ab+bc+ac)h,(a,b,c为地面边长,h为四面体的高) | |
| D. | V=$\frac{1}{3}$(S1+S2+S3+S4)r,(S1,S2,S3,S4分别为四个面的面积,r为内切球的半径) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{4\sqrt{3}}}{5}$ | B. | $\sqrt{15}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30 | B. | 15 | C. | 11 | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com