精英家教网 > 高中数学 > 题目详情
17.设a,b∈{1,2,3,4,5,6},则有不同离心率的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,(a>b)的个数为(  )
A.30B.15C.11D.6

分析 由题意,任意取a,b,有C62=15种情况,再去掉离心率相同的情况,即可得出结论.

解答 解:由题意,任意取a,b,有C62=15种情况,其中a=2,b=1;a=4,b=2;a=6,b=3,离心率相同;a=3,b=1;a=6,b=2,离心率相同;a=3,b=2;a=6,b=4,离心率相同;
所以有不同离心率的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,(a>b)的个数为11.
故选C.

点评 本题考查组合知识的运用,考查间接法,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图,在△ABC中,N为线段AC上接近A点的四等分点,若$\overrightarrow{AP}=({m+\frac{2}{9}})\overrightarrow{AB}+\frac{2}{9}\overrightarrow{BC}$,则实数m的值为(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设随机变量ξ的概率分布如表所示:
ξ012
pa$\frac{1}{3}$$\frac{1}{6}$
f(x)=P(ξ≤x),则当x的范围是[1,2)时,f(x)等于(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=3,且$\overrightarrow{a}$丄($\overrightarrow{a}$+$\overrightarrow{b}$)则$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影为(  )
A.3B.-3C.$-\frac{{3\sqrt{3}}}{2}$D.$\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等比数列{an}前n项和为Sn,若S3=3,S6=-21,则S9=171.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在数列{an}中,a1=3,an+1=2an+5,n∈N+
(1)证明:数列{an+5}是等比数列.
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{bn}前n项和Sn,且b1=1,${b_{n+1}}=\frac{1}{3}{S_n}$.
(1)求b2,b3,b4的值;
(2)求{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果f($\frac{1}{x}$)=$\frac{x}{1-x}$,则当x≠0且x≠1时,f(x)=(  )
A.$\frac{1}{x}$(x≠0且x≠1)B.$\frac{1}{x-1}$(x≠0且x≠1)C.$\frac{1}{1-x}$(x≠0且x≠1)D.$\frac{1}{x}$-1(x≠0且x≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某物体的运动方程是s=$\frac{{t}^{3}}{9}$+t,则当t=3s时的瞬时速度是(  )
A.2m/sB.3m/sC.4m/sD.5m/s

查看答案和解析>>

同步练习册答案