精英家教网 > 高中数学 > 题目详情

已知椭圆=1和点P(2,1),过P作椭圆的弦,并使P点是弦的中点,求弦所在的直线方程.

答案:
解析:

解:设直线方程为(t为参数),代入椭圆方程得,依题意=0,

∴cosθ+2sinθ=0,tanθ=-

∴所求弦所在直线方程为y-1=-(x-2),即x+2y-4=0.


练习册系列答案
相关习题

科目:高中数学 来源:2010年普通高等学校招生全国统一考试、理科数学(山东卷) 题型:044

如图,已知椭圆=1(a>b>0)的离心率为.以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点时该椭圆的焦点,设P为该双曲线上异于顶点的任一点.直线PF1和PF2与椭圆的焦点分别为A、B和C、D.

(Ⅰ)求椭圆和双曲线的标准方程:

(Ⅱ)设直线PF1、PF2的斜率分别为k1,k2,证明:k1·k2l

(Ⅲ)是否存在常数,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在.求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河北省高三3月月考数学试卷(解析版) 题型:解答题

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(ab>0)过点(1,),离心率为,左、右焦点分别为F1F2.点P为直线lxy=2上且不在x轴上的任意一点,直线PF1PF2与椭圆的交点分别为ABCDO为坐标原点.

(1)求椭圆的标准方程.

(2)设直线PF1PF2的斜率分别为k1k2.

(ⅰ)证明:=2.

(ⅱ)问直线l上是否存在点P,使得直线OAOBOCOD的斜率kOAkOBkOCkOD满足kOAkOBkOCkOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆=1(ab>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1PF2与椭圆的交点分别为ABCD.

(1)求椭圆和双曲线的标准方程;

(2)设直线PF1PF2的斜率分别为k1k2,证明:k1·k2=1;

(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案