精英家教网 > 高中数学 > 题目详情

【题目】如图,直三棱柱 的中点.

1证明 平面

2 求点到平面的距离.

【答案】(1)证明见解析;(2).

【解析】试题分析:(1)连接,设的交点为,则的中点,连接,又的中点,由三角形中位线定理可得,从而根据线面平行的判定定理可得平面;(2)设点到平面的距离为,因为的中点在平面上,故到平面的距离也为,三棱锥的体积 的面积,由得结果.

试题解析:(1)连接,设的交点为,则的中点,连接,又的中点,所以.又平面 平面,所以平面.

(2)由 的中点,所以

在直三棱柱中, ,所以

,所以 ,所以.

设点到平面的距离为,因为的中点在平面上,

到平面的距离也为,三棱锥的体积

的面积,则,得

故点到平面的距离为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司准备将万元资金投入到市环保工程建设中,现有甲、乙两个建设项目选择,若投资甲项目一年后可获得的利润(万元)的概率分布列如表所示:

的期望;若投资乙项目一年后可获得的利润(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为.若乙项目产品价格一年内调整的次数(次数)与的关系如表所示:

Ⅰ)求的值;

Ⅱ)求的分布列;

Ⅲ)若该公司投资乙项目一年后能获得较多的利润,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)若,求的值.

)在中,角的对边分别是,且满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体,在空间中到三条棱所在直线距离相等的点的个数( )

A. 0B. 2C. 3D. 无数个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两地相距海里,某货轮匀速行驶从甲地运输货物到乙地,运输成本包括燃料费用和其他费用.已知该货轮每小时的燃料费与其速度的平方成正比,比例系数为,其他费用为每小时元,且该货轮的最大航行速度为海里/小时.

)请将该货轮从甲地到乙地的运输成本表示为航行速度(海里/小时)的函数.

)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜三棱柱的所有棱长都相等,且.

(1)求证:

(2)直线与直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,一条准线方程为过椭圆的上顶点A作一条与x轴、y轴都不垂直的直线交椭圆于另一点PP关于x轴的对称点为Q

求椭圆的方程;

若直线APAQx轴交点的横坐标分别为mn,求证:mn为常数,并求出此常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆70周年庆典磅礴而又欢快的场景,仍历历在目.已知庆典中某省的游行花车需要用到某类花卉,而该类花卉有甲、乙两个品种,花车的设计团队对这两个品种进行了检测.现从两个品种中各抽测了10株的高度,得到如下茎叶图.下列描述正确的是(

A.甲品种的平均高度大于乙品种的平均高度,且甲品种比乙品种长的整齐

B.甲品种的平均高度大于乙品种的平均高度,但乙品种比甲品种长的整齐

C.乙品种的平均高度大于甲品种的平均高度,且乙品种比甲品种长的整齐

D.乙品种的平均高度大于甲品种的平均高度,但甲品种比乙品种长的整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是首项为a,公差为d的等差数列(d≠0), 是其前n项的和.记n∈N*,其中c为实数.

(1)若c=0,且b1b2b4成等比数列,证明:Snkn2Sk(kn∈N*);

(2)若{}是等差数列,证明:c=0.

查看答案和解析>>

同步练习册答案