精英家教网 > 高中数学 > 题目详情
已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R).
(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;
(Ⅱ)求直线l与圆C相交的弦长.
考点:参数方程化成普通方程,直线与圆的位置关系
专题:选作题,坐标系和参数方程
分析:(Ⅰ)利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得圆的直角坐标方程;
(Ⅱ)利用点到直线的距离公式求出圆心C到直线l的距离d,由垂径定理及勾股定理即可求出弦长|AB|.
解答: 解:(Ⅰ)由ρ=2cosθ⇒ρ2=2ρcosθ⇒x2+y2-2x=0⇒(x-1)2+y2=1,
直线l的参数方程为
x=2+
2
2
t
y=
2
2
t
(t为参数,t∈R)的普通方程为x-y-2=0;
(Ⅱ)圆心到直线距离为:d=
|1-0-2|
2
=
2
2

∴弦长|AB|=2
1-
1
2
=
2
点评:本题考查了直线的参数方程、简单曲线的极坐标方程和直线与圆的位置关系等知识点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合,已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x-mn=0的两个根.
(Ⅰ)证明:C,B,D,E四点共圆;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
tanα
1-tanα
=1,则
1
csc2α
+
1
cosαcscα
+
1
sec2α
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求证:AB1⊥面A1BD;
(2)求二面角A-A1D-B的余弦值;
(3)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=xex-ex+1的单调递增区间是(  )
A、(-∞,e)
B、(1,e)
C、(e,+∞)
D、(e-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的二次方程x2+2mx-m+2=0(m∈R).
(1)若方程有两个大于1的实根,求m的取值范围;
(2)若不等式x2+2mx-m+2>0对-1≤x≤1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{a1}的首项a1=1,前n项和Sn满足an=2(
Sn
+
Sn-1
)(n≥2).
(1)求数列{an}的通项公式;
(2)若数列{
1
Sn
}的前n项和为Tn,求证:Tn
5
4
(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

求极坐标系中,圆ρ=2上的点到直线ρ(cosθ+
3
sinθ)=6的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

表示满足(x-y)(x+2y-2)≥0的点(x,y)所在的区域应为(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案