精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln
1
x
-ax2+x(a>0)

(1)若f(x)是单调函数,求a的取值范围;
(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-2ln2.
(Ⅰ)f(x)=-lnx-ax2+x,
f′(x)=-
1
x
-2ax+1=-
2ax2-x+1
x
.…(2分)
令△=1-8a.
当a≥
1
8
时,△≤0,f′(x)≤0,f(x)在(0,+∞)单调递减.…(4分)
当0<a<
1
8
时,△>0,方程2ax2-x+1=0有两个不相等的正根x1,x2
不妨设x1<x2
则当x∈(0,x1)∪(x2,+∞)时,f′(x)<0,
当x∈(x1,x2)时,f′(x)>0,
这时f(x)不是单调函数.
综上,a的取值范围是[
1
8
,+∞).…(6分)
(Ⅱ)由(Ⅰ)知,当且仅当a∈(0,
1
8
)时,f(x)有极小值点x1和极大值点x2
且x1+x2=
1
2a
,x1x2=
1
2a

f(x1)+f(x2)=-lnx1-ax12+x1-lnx2-ax22+x2
=-(lnx1+lnx2)-
1
2
(x1-1)-
1
2
(x2-1)+(x1+x2
=-ln(x1x2)+
1
2
(x1+x2)+1=ln(2a)+
1
4a
+1.…(9分)
令g(a)=ln(2a)+
1
4a
+1,a∈(0,
1
8
],
则当a∈(0,
1
8
)时,g′(a)=
1
a
-
1
4a2
=
4a-1
4a2
<0,g(a)在(0,
1
8
)单调递减,
所以g(a)>g(
1
8
)=3-2ln2,即f(x1)+f(x2)>3-2ln2.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案