精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和为Sn=b×2n+a(a≠0,b≠0),若数列{an}是等比数列,则a,b满足(  )
A.a-b=0B.a-b≠0C.a+b=0D.a+b≠0

分析 由题意可得数列的前3项,由等比数列的通项公式可得ab的方程,化简可得.

解答 解:由题意当n=1时,a1=Sn=b×21+a=2b+a,
当n=2时,a2=S2-S1=b×22-b×21=2b,
当n=3时,a3=S3-S2=b×23-b×22=4b,
∵数列{an}是等比数列,
∴(2b)2=(2b+a)•4b,
化简可得a+b=0
故选:C

点评 本题考查等比数列的性质和求和公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图摩天轮半径10米,最低点A离地面0.5米,已知摩天轮按逆时针方向每3分钟转一圈(速率均匀),人从最低点A上去且开始计时,则t分分钟后离地面10sin($\frac{2}{3}π$t$-\frac{π}{2}$)+10.5或10.5-10cos($\frac{2}{3}$πt)米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班甲、乙两个活动小组各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:
学生1号2号3号4号5号
甲组65798
乙组48977
(Ⅰ)从统计数据看,甲乙两个组哪个组成绩更稳定(用数据说明)?
(Ⅱ)若把上表数据对应的频率作为学生投篮命中率,规定两个小组的1号和2号同学分别代表自己的小组参加比赛,每人投篮一次,将甲活动小组两名同学投中的次数之和记作X,试求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知角α的终边过点P(a,-2a)(a≠0),求tanα,sinα+cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆柱轴截面为PQBA,C为底面圆周上异于A、B的一点,D为PC中点.
(1)若AC=PA,求证:AD⊥PB;
(2)若四边形PQBA是正方形,C为弧AB的中点,PA=2,求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如表:
甲厂:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数1530125198773520
乙厂:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数407079162595535
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有99.9%的把握认为“生产的零件是否为优质品与不同的分厂有关”.
甲 厂    乙 厂  合计
优质品
  非优质品
   合计
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(x2≥x)0.100    0.050    0.025    0.010     0.001
x 2.706    3.841    5.024     6.635    10.828
(Ⅱ)现用分层抽样方法(按优质品和非优质品分二层)从两厂中各抽取五件零件,然后从每个厂的五件产品中各抽取两件,将这四件产品中的优质品数记为X,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$、$\overrightarrow{d}$,求作:$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$+$\overrightarrow{d}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若|h|$≤\frac{a}{4}$,|k|$≤\frac{a}{6}$(a为常数),则|2h-3k|的最大值是a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=xlnx,g(x)=-x2+ax-6.
(Ⅰ)求函数f(x)的最小值;
(Ⅱ)对一切x∈[3,+∞)恒有f(x)≥g(x)成立,求实数a的取值范围;
(Ⅲ)当x∈(0,2π),求证:lnx+cosx+$\frac{3π}{2x}≥\frac{sinx}{x}$.

查看答案和解析>>

同步练习册答案