精英家教网 > 高中数学 > 题目详情
9.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出500件,量其内径尺寸,结果如表:
甲厂:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数1530125198773520
乙厂:
分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)
频数407079162595535
(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有99.9%的把握认为“生产的零件是否为优质品与不同的分厂有关”.
甲 厂    乙 厂  合计
优质品
  非优质品
   合计
附:x2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(x2≥x)0.100    0.050    0.025    0.010     0.001
x 2.706    3.841    5.024     6.635    10.828
(Ⅱ)现用分层抽样方法(按优质品和非优质品分二层)从两厂中各抽取五件零件,然后从每个厂的五件产品中各抽取两件,将这四件产品中的优质品数记为X,求X的分布列.

分析 (Ⅰ)由图中表格数据易得2×2列联表,计算可得X2的近似值,可得结论;
(Ⅱ)甲厂有4件优质品,1件非优质品,乙厂有3件优质品,2件非优质品.从两个厂各抽取2件产品,优质品数X的取值为1,2,3,4,由概率公式可得.

解答 解:(Ⅰ)列联表如下

甲 厂    乙 厂  合计
优质品400300700
  非优质品100200300
   合计5005001000
x2=$\frac{1000(400×200-100×300)^{2}}{500×500×700×300}$47.619,
∵47.619>10.828,∴有99.9%的把握认为“生产的零件是否为优质品与不同的分厂有关”.(6分)
(Ⅱ)甲厂有4件优质品,1件非优质品,乙厂有3件优质品,2件非优质品.
从两个厂各抽取2件产品,优质品数X的取值为1,2,3,4.
P(X=1)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{5}^{2}{C}_{5}^{2}}$=$\frac{1}{25}$;P(X=2)=$\frac{{C}_{4}^{1}{C}_{2}^{1}{C}_{3}^{1}+{C}_{4}^{2}{C}_{2}^{2}}{{C}_{5}^{2}{C}_{5}^{2}}$=$\frac{3}{10}$;
P(X=4)=$\frac{{C}_{4}^{2}{C}_{3}^{2}}{{C}_{5}^{2}{C}_{5}^{2}}$=$\frac{9}{50}$,所以P(X=3)=1-$\frac{1}{25}$-$\frac{3}{10}$-$\frac{9}{50}$=$\frac{12}{25}$    (10分)
所以X的分布列为
X1234
P$\frac{1}{25}$$\frac{3}{10}$$\frac{12}{25}$$\frac{9}{50}$
(12分)

点评 本题考查独立检验,考查概率的计算,考查离散型随机变量的分布列,正确求概率是关键.属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=(x-2)ex和g(x)=kx3-x-2.
(1)若函数g(x)在区间(1,2)不单调,求实数k的取值范围;
(2)当x∈[1,+∞)时,不等式f(x)≥g(x)+x+2恒成立,求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设正整数a,b,c满足:对任意的正整数n,an+bn=cn+1
(1)求证:a+b≥c
(2)求出所有满足题设的a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点P($\sqrt{5}$,-2),则sinα+tanα=$-\frac{2}{3}$$-\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}的前n项和为Sn=b×2n+a(a≠0,b≠0),若数列{an}是等比数列,则a,b满足(  )
A.a-b=0B.a-b≠0C.a+b=0D.a+b≠0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了参加一项数学能力测试团体赛,某校对甲、乙两个实验班级进行了一段时间的“限时抢分”强化训练,现分别从强化训练期间两班的若干次平均成绩中随机抽取6次(满分100分),记录如表:
甲平均成绩839180799285
乙平均成绩929380848279
根据这6次的数据回答:
(Ⅰ)现要选派一个实验班参加测试团体赛,从统计学角度,你认为选派哪个实验班合理?说明理由;
(Ⅱ)对选派的实验班在团体赛的三次比赛成绩进行预测,记这三次平均成绩中不低于85分的次数为X,求X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高一年级开设A,B,C,D,E五门选修课,每位同学须彼此独立地选三门课程,其中甲同学必选A课程,不选B课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(Ⅰ)求甲同学选中C课程且乙同学未选中C课程的概率;
(Ⅱ)用X表示甲、乙、丙选中C课程的人数之和,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.f(x)=exlnx-$\frac{a}{{2x}^{2}}$,函数在x=1处切线与 y轴垂直,g(x)=f′(x)-f(x),h(x)=-$\frac{b}{x}$-lnx,若g(x)>h(x)在[1,+∞)恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+ln($\frac{1}{2}+\frac{1}{2}$ax)-ax(a为常数,a>0)
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数y=f(x)有两个不同的零点x1,x2,证明:f′($\frac{{x}_{1}+{x}_{2}}{2}$)<0.

查看答案和解析>>

同步练习册答案