分析 (1)由勾股定理得AC⊥BC,由CC1⊥面ABC 得到CC1⊥AC,从而得到AC⊥面BCC1,故AC⊥BC1.
(2)C作CF⊥AB垂足为F,CF⊥面ABB1A1,面积法求CF,求出三角形DB1A1的面积,代入体积公式进行运算.
解答 (1)证明:在△ABC中,∵AC=3,AB=5,BC=4,
∴△ABC为直角三角形,∴AC⊥BC.
又∵CC1⊥平面ABC,∴CC1⊥AC,CC1∩BC=C,
∴AC⊥平面BCC1,∴AC⊥BC1.
(2)解:在△ABC中,过C作CF⊥AB,F为垂足,
∵平面ABB1A1⊥平面ABC,且平面ABB1A1∩平面ABC=AB,∴CF⊥平面ABB1A1,
由AC×BC=AB×h,得$h=\frac{3×4}{5}$=$\frac{12}{5}$.
∴三棱锥A1-B1CD的体积V=${V}_{C-{A}_{1}D{B}_{1}}$=$\frac{1}{3}{S}_{△{A}_{1}D{B}_{1}}h$=$\frac{1}{3}×\frac{1}{2}×5×4×\frac{12}{5}$=8.
点评 本题考查证明线线垂直、线面垂直的方法,求三棱锥的体积,求点C到面A1B1D的距离是解题的难点.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com