精英家教网 > 高中数学 > 题目详情
12.在数列{an}中,a1=1,an=2nan-1,则an=${2}^{\frac{{n}^{2}+n-2}{2}}$.

分析 由$\frac{{a}_{n}}{{a}_{n-1}}$=2n,利用累乘法能求出an

解答 解:∵在数列{an}中,a1=1,an=2nan-1
∴$\frac{{a}_{n}}{{a}_{n-1}}$=2n
∴${a}_{n}={a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=1×22×23×…×2n
=22+3+…+n
=${2}^{\frac{{n}^{2}+n-2}{2}}$.
故答案为:${2}^{\frac{{n}^{2}+n-2}{2}}$.

点评 本题考查数列的通项公式的求法,是中档题,解题时要认真审题,注意累乘法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点
(1)求圆C的方程;
(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知Pn(xn,yn)(n=1,2,3,…)在双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1的右支上,F1、F2分别为双曲线的左、右焦点,且满足P1F2⊥F1F2,|Pn+1F2|=|PnF1|,则数列{xn}的通项公式xn=(  )
A.4n-2B.4n-1C.$\frac{8n+1}{3}$D.$\frac{8n-1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设关于x的函数f(x)=-sin2x-2acosx-2a的最小值为g(a).
(I)求g(a)的解析式:
(Ⅱ)确定能使用g(a)=-$\frac{1}{2}$的a的值,并对此时的a求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知cos(π+α)=-$\frac{1}{2}$,求cos($\frac{π}{2}$+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.请你设计一个计算机程序,计算点(x0,y0)到直线Ax+By+C=0的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=ax(a>0,a≠1),g(x)是f(x)的反函数.
(1)若y=2x与g(x)相切,求a的值;
(2)若x>0时,f(x)>g(x)恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+φ)(其中A>0.ω>0,0<φ<$\frac{π}{2}$)的周期为π,其图象上一个最高点为M($\frac{π}{6}$,2).
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[0,$\frac{π}{4}$]时,求f(x)的最值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.an+1=3an+2n+3,a1=1,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案