精英家教网 > 高中数学 > 题目详情

【题目】如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:

(1)BE=EC;
(2)ADDE=2PB2

【答案】
(1)证明:连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,

∵PC=2PA,D为PC的中点,

∴PA=PD,

∴∠PAD=∠PDA,

∵∠PDA=∠CDE,

∴∠OEA+∠CDE=∠OAE+∠PAD=90°,

∴OE⊥BC,

∴E是 的中点,

∴BE=EC;


(2)证明:∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,

∴PA2=PBPC,

∵PC=2PA,

∴PA=2PB,

∴PD=2PB,

∴PB=BD,

∴BDDC=PB2PB,

∵ADDE=BDDC,

∴ADDE=2PB2


【解析】(1)连接OE,OA,证明OE⊥BC,可得E是 的中点,从而BE=EC;(2)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得ADDE=2PB2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知
(1)请写出fn(x)的表达式(不需证明);
(2)设fn(x)的极小值点为Pn(xn , yn),求yn
(3)设 ,gn(x)的最大值为a,fn(x)的最小值为b,求b﹣a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= ,则函数y=|f(x)|﹣ 的零点个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在斜三梭柱ABC﹣A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,E是棱AB上一点,且OE∥平面BCC1B1
(1)求证:E是AB中点;
(2)若AC1⊥A1B,求证:AC1⊥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱椎中,底面为菱形, 的中点.

(1)求证: 平面

(2)若底面 ,求三棱椎的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线 )上一点, 是抛物线的焦点, .

(1)求抛物线的方程;

(2)已知 ,过 的直线 交抛物线 两点,以 为圆心的圆 与直线 相切,试判断圆 与直线 的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面底面.分别是的中点,求证:

(Ⅰ)底面

(Ⅱ)平面

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,直线x轴的交点为P,与抛物线的交点为Q,且

求抛物线的方程;

如图所示,过F的直线l与抛物线相交于两点,与圆相交于两点两点相邻,过两点分别作抛物线的切线,两条切线相交于点M,求的面积之积的最小值.

查看答案和解析>>

同步练习册答案