精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为F,直线x轴的交点为P,与抛物线的交点为Q,且

求抛物线的方程;

如图所示,过F的直线l与抛物线相交于两点,与圆相交于两点两点相邻,过两点分别作抛物线的切线,两条切线相交于点M,求的面积之积的最小值.

【答案】12.

【解析】试题分析】(I)根据抛物线的定义以及,解得,故抛物线的方程为.(II)设出直线的方程,联立直线方程和抛物线方程,写出韦达定理,利用导数求得直线的方程,联立两个方程求得点的坐标.利用点到直线距离公式求得的距离,由此求得两个三角形面积乘积的表达式,进而求得最小值.

试题解析

由题意可知,丨QF

,则,解得:

抛物线

l

联立,整理得:

,求导

直线MA,即

同理求得MD

,解得:,则

l的距离

的面积之积AB丨丨CD

AFDF

当且仅当时取等号,

时,的面积之积的最小值1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:

(1)BE=EC;
(2)ADDE=2PB2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如表所示:

商店名称

A

B

C

D

E

销售额(x)/千万元

3

5

6

7

9

利润额(y)/百万元

2

3

3

4

5

(1)画出销售额和利润额的散点图.

(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程=x+,其中=,=-.

(3)若获得利润是4.5百万元时估计销售额是多少(千万元)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足条件b2+c2﹣a2=bc=1,cosBcosC=﹣ ,则△ABC的周长为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图显示.

(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上网购物者人数成等差数列,求a,b的值.
(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1000位上网购者中抽取10人,并在这10人中随机抽取3人进行回访,求此三人获得代金券总和X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,已知曲线:,点的极坐标为,直线的极坐标方程为,且点在直线上.

(1)求曲线的极坐标方程和直线的直角坐标方程;

(2)设向左平移个单位长度后得到,的交点为, ,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面ABCD是菱 形,PA=PB,且侧面PAB⊥平面ABCD,点E是AB的中点.

(1)求证:PE⊥AD;

(2)若CA=CB,求证:平面PEC⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市拟定2016年城市建设A,B,C三项重点工程,该市一大型城建公司准备参加这三个工程的竞标,假设这三个工程竞标成功与否相互独立,该公司对A,B,C三项重点工程竞标成功的概率分别为a,b, (a>b),已知三项工程都竞标成功的概率为 ,至少有一项工程竞标成功的概率为
(1)求a与b的值;
(2)公司准备对该公司参加A,B,C三个项目的竞标团队进行奖励,A项目竞标成功奖励2万元,B项目竞标成功奖励4万元,C项目竞标成功奖励6万元,求竞标团队获得奖励金额的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥 底面底面为正方形 分别是的中点.

(Ⅰ)求证:

(Ⅱ)求与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案