精英家教网 > 高中数学 > 题目详情
12.已知等比数列{bn}前n项和为Sn=3n-k(k∈R),公差为k的等差数列{an},满足b1=a1
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)设cn=$\frac{(2{a}_{n}-1){b}_{n+2}}{2{a}_{n}{a}_{n+1}}$,求数列{cn},的前n项和Tn

分析 (Ⅰ)由题意可得k=1,从而求数列{an},{bn}的通项公式;
(Ⅱ)化简cn=$\frac{(2{a}_{n}-1){b}_{n+2}}{2{a}_{n}{a}_{n+1}}$=$\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$,从而求Tn=($\frac{{3}^{3}}{3}$-$\frac{{3}^{2}}{2}$)+($\frac{{3}^{4}}{4}$-$\frac{{3}^{3}}{3}$)+…+($\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$)=$\frac{{3}^{n+2}}{n+2}$-$\frac{9}{2}$即可.

解答 解:(Ⅰ)∵Sn=3n-k为等比数列,
∴k=1,b1=a1=S1=31-1=2,
∴an=2+(n-1)×1=n+1,
bn=2•3n-1
(Ⅱ)∵cn=$\frac{(2{a}_{n}-1){b}_{n+2}}{2{a}_{n}{a}_{n+1}}$=$\frac{(2n+1)2•{3}^{n+1}}{2(n+1)(n+2)}$
=$\frac{(2n+1){3}^{n+1}}{(n+1)(n+2)}$=$\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$,
∴Tn=($\frac{{3}^{3}}{3}$-$\frac{{3}^{2}}{2}$)+($\frac{{3}^{4}}{4}$-$\frac{{3}^{3}}{3}$)+…+($\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{n+1}}{n+1}$)
=$\frac{{3}^{n+2}}{n+2}$-$\frac{{3}^{2}}{2}$
=$\frac{{3}^{n+2}}{n+2}$-$\frac{9}{2}$.

点评 本题考查了等差数列与等比数列的通项公式与前n项和公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.计算i2=(  )
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知Z1=2+i,Z2=$\frac{{{Z_1}+i}}{{(2i+1)-{Z_1}}}$,求$\overline{Z_1}$,|Z1|,Z2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=log0.5(5x2-ax+8)在[-1,+∞)上为减函数,则实数a的取值范围为(-13,-10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若y=2exsinx,则y′等于(  )
A.-2excosxB.-2exsinxC.2ex(sinx-cosx)D.2ex(sinx+cosx)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\frac{1}{1-x}+lnx$,且f(x0)=0,若a∈(1,x0),b∈(x0,+∞),则(  )
A.f(a)<0,f(b)<0B.f(a)>0,f(b)>0C.f(a)>0,f(b)<0D.f(a)<0,f(b)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)在R上关于x=3和x=8都对称,且在闭区间[0,8]上只有f(1)=f(5)=f(7)=0.
(1)求证函数f(x)是周期函数;
(2)求函数f(x)在闭区间[-10,0]上的所有零点;
(3)求函数f(x)在闭区间[-2012,2012]上的零点个数及所有零点的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.与函数y=x有相同图象的一个函数是(  )
A.y=$\frac{{x}^{3}}{{x}^{2}}$B.y=a${\;}^{lo{g}_{a}x}$C.y=$\sqrt{{x}^{2}}$D.y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\left\{\begin{array}{l}{x,当x≥1}\\{0,当x=0}\\{-1,当x<-1}\end{array}\right.$的值域是{0}∪{-1}∪[1,+∞).

查看答案和解析>>

同步练习册答案