精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,
PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.

(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

【答案】解:(Ⅰ)∵PC⊥平面ABCD,AC平面ABCD,∴AC⊥PC.

∵AB=4,AD=CD=2,∴AC=BC=2

∴AC2+BC2=AB2,∴AC⊥BC.

又BC∩PC=C,∴AC⊥平面PBC.

∵AC平面EAC,

∴平面EAC⊥平面PBC.

(Ⅱ)如图,以点C为原点, 分别为x轴、y轴、z轴正方向,建立空间直角坐标系,则C(0,0,0),A(2,2,0),B(2,﹣2,0).

设P(0,0,2a)(a>0),则E(1,﹣1,a), =(2,2,0), =(0,0,2a), =(1,﹣1,a).

=(1,﹣1,0),则 = =0, 为面PAC的法向量.

=(x,y,z)为面EAC的法向量,则 = =0,

,取x=a,y=﹣a,z=﹣2,则 =(a,﹣a,﹣2),

依题意,|cos< >|= = = ,则a=2.

于是n=(2,﹣2,﹣2), =(2,2,﹣4).

设直线PA与平面EAC所成角为θ,

则sinθ=|cos< >|= =

即直线PA与平面EAC所成角的正弦值为


【解析】(Ⅰ)证明AC⊥PC.AC⊥BC.通过直线与平面垂直的判定定理以及平面与平面垂直的判定定理证明平面EAC⊥平面PBC.(Ⅱ)如图,以点C为原点, 分别为x轴、y轴、z轴正方向,建立空间直角坐标系,求出相关点的坐标以及面PAC的法向量.面EAC的法向量,通过二面角P﹣AC﹣E的余弦值为 ,求出直线PA的向量,利用向量的数量积求解直线PA与平面EAC所成角的正弦值即可.
【考点精析】认真审题,首先需要了解平面与平面垂直的判定(一个平面过另一个平面的垂线,则这两个平面垂直),还要掌握空间角的异面直线所成的角(已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数
(1)求f(x)的单调区间及最大值;
(2)讨论关于x的方程|lnx|=f(x)根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的三个内角A,B,C的三条对边,且c2=a2+b2﹣ab.
(Ⅰ)求角C的大小;
(Ⅱ)求cosA+cosB的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,AB∥CD,AB=2,BC=CD=1,顶角D1在底面ABCD内的射影恰好为点C.
(1)求证:AD1⊥BC;
(2)若直线DD1与直线AB所成角为 ,求平面ABC1D1与平面ABCD所成角(锐角)的余弦值函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆[x﹣(e+ )]2+y2=1任意一点,则线段PQ的长度的最小值为(
A.
B.
C.
D.e+ ﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,则该算法的功能是(
A.计算数列{2n1}前5项的和
B.计算数列{2n﹣1}前6项的和
C.计算数列{2n﹣1}前5项的和
D.计算数列{2n1}前6项的和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.
(Ⅰ)求证:BD⊥A1C;
(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;
(Ⅲ)在线段CC1上是否存在点P,使得平面A1CD1⊥平面PBD,若存在,求出 的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系xOy平面内,若函数f(x)= 的图象与x轴围成一个封闭的区域A,将区域A沿z轴的正方向平移4个单位,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域A的面积相等,则此圆柱的体积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)设a>1,试讨论f(x)单调性;
(2)设g(x)=x2﹣2bx+4,当 时,任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b的取值范围.

查看答案和解析>>

同步练习册答案