【题目】阅读如图所示的程序框图,则该算法的功能是( )
A.计算数列{2n﹣1}前5项的和
B.计算数列{2n﹣1}前6项的和
C.计算数列{2n﹣1}前5项的和
D.计算数列{2n﹣1}前6项的和
【答案】D
【解析】解:由算法的流程知,第一次运行,A=2×0+1=1,i=1+1=2;
第二次运行,A=2×1+1=3,i=2+1=3;
第三次运行,A=2×3+1=7,i=3+1=4;
第四次运行,A=2×7+1=15,i=5;
第五次运行,A=2×15+1=31,i=6;
第六次运行,A=2×31+1=63,i=7;满足条件i>6,终止运行,输出A=63,
∴A=1+2+22+…+25= =26﹣1=64﹣1=63.
故选D.
【考点精析】解答此题的关键在于理解算法的循环结构的相关知识,掌握在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,循环结构可细分为两类:当型循环结构和直到型循环结构.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求C1 , C2的极坐标方程;
(Ⅱ)若直线C3的极坐标方程为θ= (ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数y=f(x)满足:①对于任意的x∈R,都有f(x+2)=f(x﹣2);②函数y=f(x+2)是偶函数;③当x∈(0,2]时,f(x)=ex﹣ ,a=f(﹣5),b=f( ).c=f( ),则a,b,c的大小关系是( )
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,
PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函数f(x)= 的图象在y轴右侧的第一个最高点(即函数取得最大值的点)为 ,在原点右侧与x轴的第一个交点为 .
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)在△ABC中,角A′B′C的对边分别是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求边长c.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地.”问此人第4天和第5天共走了( )
A.60里
B.48里
C.36里
D.24里
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)= ﹣ (x为实常数).
(1)当a=1时,求函数φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2f(x)=g(x)(其中e=2.71828…)在区间[ ]上有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=a﹣x2( ≤x≤e,e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com