精英家教网 > 高中数学 > 题目详情

已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是________.

(-7,3)
分析:由偶函数性质得:f(|x+2|)=f(x+2),则f(x+2)<5可变为f(|x+2|)<5,代入已知表达式可表示出不等式,先解出|x+2|的范围,再求x范围即可.
解答:因为f(x)为偶函数,所以f(|x+2|)=f(x+2),
则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2-4|x+2|<5,(|x+2|+1)(|x+2|-5)<0,
所以|x+2|<5,解得-7<x<3,
所以不等式f(x+2)<5的解集是(-7,3).
故答案为:(-7,3).
点评:本题考查函数的奇偶性、一元二次不等式的解法,借助偶函数性质把不等式具体化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义域在R上的奇函数,若f(x)的最小正周期为3,且f(1)>0,f(2)=
2m-3m+1
,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,f(-4)=-2,f(x)的导函数f′(x)的图象如图所示,若两正数a,b满足f(a+2b)<2,则
a+4
b+4
的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的偶函数,若f(x+2)=f(x),且当x∈[1,2]时,f(x)=x2+2x-1,那么f(x)在[0,1]上的表达式是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的奇函数,且在(0,+∞)内有1003个零点,则f(x)的零点的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R的偶函数,若f(x)的最小正周期是2,且当 x∈[1,2]时,f(x)=x2-2x-1,那么f(x)在[0,1]上的表达式是
f(x)=x2-2x-1
f(x)=x2-2x-1

查看答案和解析>>

同步练习册答案