精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=$\left\{\begin{array}{l}{8,x≥m}\\{{x}^{2}+4x-3,x<m}\end{array}\right.$,若函数g(x)=f(x)-2x恰有三个不同的零点,则实数m的取值范围是(1,4].

分析 由题意可得f(x)-2x=0在(-∞,m)与[m,+∞)上分别有两个不同的解与一个解,从而解得.

解答 解:∵函数g(x)=f(x)-2x恰有三个不同的零点,
∴f(x)-2x=0在(-∞,m)与[m,+∞)上分别有两个不同的解与一个解,
∴x2+2x-3=(x+3)(x-1)=0与8-2x=0在(-∞,m)与[m,+∞)上分别有两个不同的解与一个解,
∴-3∈(-∞,m),1∈(-∞,m),4∈[m,+∞);
∴1<m且m≤4;
故答案为:(1,4].

点评 本题考查了分段函数的应用及函数的零点与方程的根的关系应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知集合A={-1,3},B={x|x2+ax+b=0},且A=B,则ab=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=sin(x+φ)cosx的图象关于原点(0,0)对称,且x∈(0,$\frac{π}{2}$)时,f(x)>0.
(1)求f(x)的解析式;
(2)作函数y=|f(x)|+f(x)的图象,写出单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设不等式组$\left\{\begin{array}{l}{2x-y+1>0}\\{x+m<0}\\{y-m>0}\end{array}\right.$表示的平面区域内的所有的点P(x0,y0),都满足x0-2y0<2,则m的取值范围是(
A.(-$\frac{2}{3}$,$\frac{1}{3}$)B.(-$\frac{2}{3}$,+∞)C.[-$\frac{2}{3}$,$\frac{1}{3}$)D.[-$\frac{2}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\frac{n}{m+x}$,集合A={x|f(x)=x},B={x|f(x-2)+x=0}.
(1)若A={3},求m,n的值;
(2)在(1)的条件下,求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若lga,lgb是方程2x2-4x-2015=0的两根,则log2(lgab)的值为(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式x2+6x+9≥0的解集为(  )
A.B.RC.{x|x≤-3}D.{x|x≤-3或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合P={x|y2=-2(x-3)},Q={y|y=x2-1},则P∩Q是(  )
A.B.{(x,y)|x≤3,y≥3}C.{t|-1≤t≤3}D.{y2=-2(x-3),y=x2-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设A=[-2,3],B=[-2,7),求A∩B,A∪B.

查看答案和解析>>

同步练习册答案