【题目】某市在创建“全国文明卫生城市”的过程中,为了调查市民对创建“全国文明卫生城市”工作的了解情况,进行了一次知识问卷调查(一位市民只能参加一次).通过随机抽样,得到参加问卷调查的1000人的得分(满分100分)统计结果如下表所示.
组别 |
|
|
|
|
|
|
|
频数 | 25 | 150 | 200 | 250 | 225 | 100 | 50 |
(1)该市把得分不低于80分的市民称为“热心市民”,若以频率估计概率,以样本估计总体,求从该市的市民中任意抽取一位,抽到“热心市民”的概率;
(2)由频数分布表可以大致认为,此次问卷调查的得分
服从正态分布
,
近似为这1000人得分的平均值(同一组数据用该组数据区间的中点值表示),请用正态分布的知识求
;
(3)在(2)的条件下,该市为此次参加问卷调查的市民制定如下奖励方案:
(ⅰ)得分不低于
的可以获赠2次随机话费,得分低于
的可以获赠1次随机话费;
(ⅱ)每次获赠送的随机话费和对应的概率为:
赠送的随机话费(单元:元) | 30 | 60 |
概率 | 0.75 | 0.25 |
现有市民甲要参加此次问卷调查,记
(单位:元)为该市民参加问卷调查获赠的话费,求
的分布列与数学期望.
附:参考数据与公式
,若
,则①
;
②
;③
.
科目:高中数学 来源: 题型:
【题目】某厂加工的零件按箱出厂,每箱有10个零件,在出厂之前需要对每箱的零件作检验,人工检验方法如下:先从每箱的零件中随机抽取4个零件,若抽取的零件都是正品或都是次品,则停止检验;若抽取的零件至少有1个至多有3个次品,则对剩下的6个零件逐一检验.已知每个零件检验合格的概率为0.8,每个零件是否检验合格相互独立,且每个零件的人工检验费为2元.
(1)设1箱零件人工检验总费用为
元,求
的分布列;
(2)除了人工检验方法外还有机器检验方法,机器检验需要对每箱的每个零件作检验,每个零件的检验费为1.6元.现有1000箱零件需要检验,以检验总费用的数学期望为依据,在人工检验与机器检验中,应该选择哪一个?说明你的理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品.某市2019年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:
![]()
由表中数据可得该市各类岗位的薪资水平高低情况为( )
A.数据挖掘>数据开发>数据产品>数据分析
B.数据挖掘>数据产品>数据开发>数据分析
C.数据挖掘>数据开发>数据分析>数据产品
D.数据挖掘>数据产品>数据分析>数据开发
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面ABB1A1是菱形,且CA=CB1.
![]()
(1)证明:面CBA1⊥面CB1A;
(2)若∠BAA1=60°,A1C=BC=BA1,求二面角C﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥A﹣BCD中,△ABD与△CBD均为边长为2的等边三角形,且二面角
的平面角为120°,则该三棱锥的外接球的表面积为( )
A.7πB.8πC.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面PAC⊥平面ABC,
是以AC为斜边的等腰直角三角形,E,F,O分别为PA,PB,AC的中点,
.
![]()
(1)设G是OC的中点,证明:
∥平面
;
(2)证明:在
内存在一点M,使FM⊥平面BOE,求点M到OA,OB的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
数列
的前
项和,对任意
,都有
(
为常数).
(1)当
时,求
;
(2)当
时,
(ⅰ)求证:数列
是等差数列;
(ⅱ)若对任意
,必存在
使得
,已知
,且
,求数列
的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com