精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥P﹣ABC中,不能证明AP⊥BC的条件是(

A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥P C
D.AP⊥平面PBC

【答案】B
【解析】解:对于A,AP⊥PB,AP⊥PC,PB∩PC=P,则AP⊥平面PBC,∴AP⊥BC,不合题意;
对于B,AP⊥PB,BC⊥PB,不能证明AP⊥BC,合题意;
对于C,平面BPC⊥平面APC,平面BPC∩平面APC=PC,BC⊥PC,∴BC⊥平面PAC,∴BC⊥AP,不合题意;
对于D,AP⊥平面PBC,∴AP⊥BC,不合题意;
故选:B.
【考点精析】认真审题,首先需要了解空间中直线与直线之间的位置关系(相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P(x0,3)与点Q(x0,4)分别在椭圆=1与抛物线y2=2px(p>0).

(1)求抛物线的方程;

(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线ABy轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率是,一个顶点是

)求椭圆的方程;

)设是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抽样得到某次考试中高二年级某班8名学生的数学成绩和物理成绩如下表:

学生编号

1

2

3

4

5

6

7

8

数学成绩x

60

65

70

75

80

85

90

95

物理成绩y

72

77

80

84

88

90

93

95

(1) 求yx的线性回归直线方程(系数保留到小数点后两位).

(2) 如果某学生的数学成绩为83分,预测他本次的物理成绩.

(参考公式:回归直线方程为x,其中

ab.参考数据:=77.5,

≈84.9,.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f (x)=(x+1)lnx﹣a (x﹣1)在x=e处的切线与y轴相交于点(0,2﹣e).
(1)求a的值;
(2)函数f (x)能否在x=1处取得极值?若能取得,求此极值;若不能,请说明理由.
(3)当1<x<2时,试比较 大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆=1(a>b>0)的左、右焦点分别为F1,F2,过左焦点F1(-2,0)x轴的垂线交椭圆于P,Q两点,PF2y轴交于E,A,B是椭圆上位于PQ两侧的动点.

(1)求椭圆的离心率e和标准方程;

(2)∠APQ=∠BPQ,直线AB的斜率kAB是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”,则下列有关说法中:

①对于圆的所有非常数函数的太极函数中,一定不能为偶函数;

②函数是圆的一个太极函数;

③存在圆,使得是圆的一个太极函数;

④直线所对应的函数一定是圆的太极函数;

⑤若函数是圆的太极函数,则

所有正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A= ,P为△ABC的外心,若 1 +2λ2 ,其中λ1与λ2为实数,则λ12的最大值为(
A.
B.1﹣
C.
D.1+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015春西城区期末)执行如图所示的程序框图,输出的S值为(  )

A.2
B.
C.
D.

查看答案和解析>>

同步练习册答案