【题目】已知点P(x0,3)与点Q(x0,4)分别在椭圆=1与抛物线y2=2px(p>0)上.
(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线AB在y轴上的截距的取值范围.
【答案】(1);(2)
【解析】
(1)将P(x0,3)代入=1,求得x0,将Q(x0,4)代入y2=2px,即可求得P.
(2)根据条件判定直线QA、QB的斜率关系,求出直线AB的斜率,再设出直线AB的方程,和抛物线方程联立后化为关于y的一元二次方程,由判别式大于0,且y1y2≥0,求得直线AB在y轴上的截距的取值范围
由题意可得=1,解得x0=2(-2舍去),
根据点Q(2,4)在抛物线y2=2px上,即有16=4p,解得p=4,
则有抛物线的方程为y2=8x.
(2)由(1)知点Q的坐标为(2,4),由∠AQB的角平分线与x轴垂直,可得QA,QB的倾斜角互补,即QA,QB的斜率互为相反数,
设QA的斜率为k,则QA:y-4=k(x-2),k≠0,与抛物线方程联立,
可得y2-y-16+=0,方程的解为4,y1,由根与系数的关系得y1+4=,即y1=-4,
同理y2=--4.
又=8x1,=8x2,∴kAB=-1.
设AB:y=-x+b,与抛物线方程联立可得y2+8y-8b=0,由根与系数的关系得y1+y2=-8,y1y2=-8b,
∵Δ=64+32b>0b>-2,y1·y2=-8b≥0b≤0,
∴-2<b≤0,即直线AB在y轴上的截距的取值范围是(-2,0].
科目:高中数学 来源: 题型:
【题目】如图,双曲线 =1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=;
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值 = .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一个几何体三视图的正视图和侧视图为边长为2锐角60°的菱形,俯视图为正方形,则此几何体的内切球表面积为( )
A.8π
B.4π
C.3π
D.2π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(1)求椭圆E的方程;
(2)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(3)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,OA是南北方向的一条公路,OB是北偏东45°方向的一条公路,某风景区的一段边界为曲线C.为方便游客光,拟过曲线C上的某点分别修建与公路OA,OB垂直的两条道路PM,PN,且PM,PN的造价分别为5万元/百米,40万元/百米,建立如图所示的直角坐标系xoy,则曲线符合函数y=x+ (1≤x≤9)模型,设PM=x,修建两条道路PM,PN的总造价为f(x)万元,题中所涉及的长度单位均为百米.
(1)求f(x)解析式;
(2)当x为多少时,总造价f(x)最低?并求出最低造价.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是直角三角形,AB=AC=1,点P是棱BB1上一点,满足 (0≤λ≤1).
(1)若λ= ,求直线PC与平面A1BC所成角的正弦值;
(2)若二面角P﹣A1C﹣B的正弦值为 ,求λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C的一个焦点与抛物线C1:y2=-16x的焦点重合,且其离心率为2.
(1)求双曲线C的方程;
(2)求双曲线C的渐近线与抛物线C1的准线所围成三角形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,不能证明AP⊥BC的条件是( )
A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥P C
D.AP⊥平面PBC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com