精英家教网 > 高中数学 > 题目详情

【题目】已知点P(x0,3)与点Q(x0,4)分别在椭圆=1与抛物线y2=2px(p>0).

(1)求抛物线的方程;

(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线ABy轴上的截距的取值范围.

【答案】(1);(2)

【解析】

(1)P(x0,3)代入=1,求得x0Q(x0,4)代入y2=2px,即可求得P.

(2)根据条件判定直线QA、QB的斜率关系,求出直线AB的斜率,再设出直线AB的方程,和抛物线方程联立后化为关于y的一元二次方程,由判别式大于0,且y1y2≥0,求得直线ABy轴上的截距的取值范围

由题意可得=1,解得x0=2(-2舍去),

根据点Q(2,4)在抛物线y2=2px上,即有16=4p,解得p=4,

则有抛物线的方程为y2=8x.

(2)由(1)知点Q的坐标为(2,4),由AQB的角平分线与x轴垂直,可得QA,QB的倾斜角互补,即QA,QB的斜率互为相反数,

设QA的斜率为k,则QA:y-4=k(x-2),k≠0,与抛物线方程联立,

可得y2-y-16+=0,方程的解为4,y1,由根与系数的关系得y1+4=,即y1=-4,

同理y2=--4.

=8x1,=8x2,∴kAB=-1.

AB:y=-x+b,与抛物线方程联立可得y2+8y-8b=0,由根与系数的关系得y1+y2=-8,y1y2=-8b,

∵Δ=64+32b>0b>-2,y1·y2=-8b≥0b≤0,

-2<b≤0,即直线AB在y轴上的截距的取值范围是(-2,0].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,双曲线 =1(a,b>0)的两顶点为A1 , A2 , 虚轴两端点为B1 , B2 , 两焦点为F1 , F2 . 若以A1A2为直径的圆内切于菱形F1B1F2B2 , 切点分别为A,B,C,D.则: (Ⅰ)双曲线的离心率e=
(Ⅱ)菱形F1B1F2B2的面积S1与矩形ABCD的面积S2的比值 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个几何体三视图的正视图和侧视图为边长为2锐角60°的菱形,俯视图为正方形,则此几何体的内切球表面积为(

A.8π
B.4π
C.3π
D.2π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别是a,b,c,若AB边上的高为 ,且a2+b2=2 ab,则C=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的长轴长是短轴长的两倍,且过点C(2,1),点C关于原点O的对称点为点D.
(1)求椭圆E的方程;
(2)点P在椭圆E上,直线CP和DP的斜率都存在且不为0,试问直线CP和DP的斜率之积是否为定值?若是,求此定值;若不是,请说明理由:
(3)平行于CD的直线l交椭圆E于M,N两点,求△CMN面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,OA是南北方向的一条公路,OB是北偏东45°方向的一条公路,某风景区的一段边界为曲线C.为方便游客光,拟过曲线C上的某点分别修建与公路OA,OB垂直的两条道路PM,PN,且PM,PN的造价分别为5万元/百米,40万元/百米,建立如图所示的直角坐标系xoy,则曲线符合函数y=x+ (1≤x≤9)模型,设PM=x,修建两条道路PM,PN的总造价为f(x)万元,题中所涉及的长度单位均为百米.

(1)求f(x)解析式;
(2)当x为多少时,总造价f(x)最低?并求出最低造价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是直角三角形,AB=AC=1,点P是棱BB1上一点,满足 (0≤λ≤1).

(1)若λ= ,求直线PC与平面A1BC所成角的正弦值;
(2)若二面角P﹣A1C﹣B的正弦值为 ,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C的一个焦点与抛物线C1:y2=-16x的焦点重合,且其离心率为2.

(1)求双曲线C的方程;

(2)求双曲线C的渐近线与抛物线C1的准线所围成三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,不能证明AP⊥BC的条件是(

A.AP⊥PB,AP⊥PC
B.AP⊥PB,BC⊥PB
C.平面BPC⊥平面APC,BC⊥P C
D.AP⊥平面PBC

查看答案和解析>>

同步练习册答案