精英家教网 > 高中数学 > 题目详情
17.在区间(0,1)中随机地取出两个数,则两数之和大于$\frac{5}{6}$的概率是$\frac{47}{72}$.

分析 本题考查的知识点是几何概型的意义,关键是要找出(  )0,1)中随机地取出两个数所对应的平面区域的面积,及两数之和大于$\frac{5}{6}$对应的平面图形的面积大小,再代入几何概型计算公式,进行解答.

解答 解:如图,当两数之和小于$\frac{5}{6}$时,对应点落在阴影上,
∵S阴影=$\frac{1}{2}•(\frac{5}{6})^{2}$=$\frac{25}{72}$,
故在区间(0,1)中随机地取出两个数,
则两数之和大于$\frac{5}{6}$的概率P=1-$\frac{25}{72}$=$\frac{47}{72}$.
故答案为:$\frac{47}{72}$.

点评 几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知正四棱柱ABCD-A1B1C1D1(底面是正方形,侧棱垂直于底面)的8个顶点都在球O的表面上,AB=1,AA1′=2,则球O的半径R=6π;若E、F是棱AA1和DD1的中点,则直线EF被球O截得的线段长为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{m}$=1(m>0).
(Ⅰ)若m=2,求椭圆C的离心率及短轴长;
(Ⅱ)若存在过点P(-1,0),且与椭圆C交于A、B两点的直线l,使得以线段AB为直径的圆恰好通过坐标原点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在区间(-$\frac{π}{2}$,$\frac{π}{2}}$)上随机取一个数x,则使得tanx∈[-$\frac{{\sqrt{3}}}{3}$,$\sqrt{3}}$]的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|(x-3)(1-x)>0},B={x|y=lg(2x-3)},则A∩B=(  )
A.(3,+∞)B.[$\frac{3}{2}$,3)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}前n项和${S_n}={n^2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Tn
(Ⅲ)求使不等式(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)…(1+$\frac{1}{{a}_{n}}$)≥p$\sqrt{2n+1}$对一切n∈N*均成立的最大实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.盛有水的圆柱形容器的内壁底面半径为5cm,两个直径为5cm的玻璃小球都浸没于水中,若取出这两个小球,则水面将下降(  )cm.
A.$\frac{2}{3}$B.$\frac{5}{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P是函数y=sin(2x+θ)图象与x轴的一个交点,A,B为P点右侧同一周期上的最大值和最小值点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(  )
A.$\frac{\sqrt{3}π^2}{4}$-1B.$\frac{3π^2}{4}$-1C.$\frac{3π^2}{16}$-1D.$\frac{π^2}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=$\frac{mx}{{x}^{2}+n}$(x∈R),若方程f(x)-$\frac{3}{25}x$-$\frac{12}{25}$=0有两个根1和4.
(1)求m、n的值及f(x)的值域;
(2)若F(x)=k•f(x)+6,对于任意实数a、b、c,都存在一个以F(a)、F(b)、F(c)的三角形,求实数k的取值范围.

查看答案和解析>>

同步练习册答案