3£®ÒÑÖªÊýÁÐ{an}ǰnÏîºÍ${S_n}={n^2}$£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=$\frac{{a}_{n}}{{2}^{n}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨¢ó£©Çóʹ²»µÈʽ£¨1+$\frac{1}{{a}_{1}}$£©£¨1+$\frac{1}{{a}_{2}}$£©¡­£¨1+$\frac{1}{{a}_{n}}$£©¡Ýp$\sqrt{2n+1}$¶ÔÒ»ÇÐn¡ÊN*¾ù³ÉÁ¢µÄ×î´óʵÊýpµÄÖµ£®

·ÖÎö £¨¢ñ£©Ö±½ÓÓÉÊýÁеÄǰnÏîºÍÇóµÃÊýÁÐͨÏʽ£»
£¨¢ò£©ÓÉbn=$\frac{{a}_{n}}{{2}^{n}}$£¬È»ºóÀûÓÃÁÑÏîÏàÏû·¨ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£»
£¨¢ó£©°Ñ¸ø³öµÄ²»µÈʽ±äÐΣ¬µÃµ½p¡Ü$\frac{1}{\sqrt{2n+1}}$£¨1+$\frac{1}{{a}_{1}}$£©£¨1+$\frac{1}{{a}_{2}}$£©¡­£¨1+$\frac{1}{{a}_{n}}$£©¶Ôn¡ÊN*ºã³ÉÁ¢£¬¼Çf£¨n£©=$\frac{1}{\sqrt{2n+1}}$£¨1+$\frac{1}{{a}_{1}}$£©£¨1+$\frac{1}{{a}_{2}}$£©¡­£¨1+$\frac{1}{{a}_{n}}$£©£¬ÓÉ×÷ÉÌ·¨ÇóµÃÆäµ¥µ÷ÐԿɵÃ×î´óʵÊýpµÄÖµ£®

½â´ð ½â£º£¨¢ñ£©ÓÉ${S_n}={n^2}$£¬µÃa1=1£»µ±n¡Ý2ʱ£¬${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}-£¨n-1£©^{2}=2n-1$£®
ÑéÖ¤n=1ʱÉÏʽ³ÉÁ¢£¬¡àÊýÁÐ{an}µÄͨÏʽan=2n-1£»
£¨¢ò£©bn=$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$£¬
¡àTn=$\frac{1}{{2}^{1}}+\frac{3}{{2}^{2}}+\frac{5}{{2}^{3}}+¡­+\frac{2n-1}{{2}^{n}}$£¬¢Ù
$\frac{1}{2}{T}_{n}=\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}+¡­+\frac{2n-3}{{2}^{n}}+\frac{2n-1}{{2}^{n+1}}$£¬¢Ú
¢Ù-¢ÚµÃ£º$\frac{1}{2}{T}_{n}=\frac{1}{2}+\frac{1}{2}+\frac{1}{{2}^{2}}+¡­+\frac{1}{{2}^{n-1}}-\frac{2n-1}{{2}^{n+1}}$=$\frac{1}{2}+\frac{\frac{1}{2}£¨1-\frac{1}{{2}^{n-1}}£©}{1-\frac{1}{2}}-\frac{2n-1}{{2}^{n+1}}$=$\frac{3}{2}-\frac{1}{{2}^{n-1}}-\frac{2n-1}{{2}^{n+1}}$£¬
¡à${T}_{n}=3-\frac{2n+3}{{2}^{n}}$£»
£¨¢ó£©ÓÉÌâÒâµÃp¡Ü$\frac{1}{\sqrt{2n+1}}$£¨1+$\frac{1}{{a}_{1}}$£©£¨1+$\frac{1}{{a}_{2}}$£©¡­£¨1+$\frac{1}{{a}_{n}}$£©¶Ôn¡ÊN*ºã³ÉÁ¢£¬
¼Çf£¨n£©=$\frac{1}{\sqrt{2n+1}}$£¨1+$\frac{1}{{a}_{1}}$£©£¨1+$\frac{1}{{a}_{2}}$£©¡­£¨1+$\frac{1}{{a}_{n}}$£©£¬
Ôò$\frac{f£¨n+1£©}{f£¨n£©}$=$\frac{\frac{1}{\sqrt{2n+3}}£¨1+\frac{1}{{a}_{1}}£©£¨1+\frac{1}{{a}_{2}}£©¡­£¨1+\frac{1}{{a}_{n+1}}£©}{\frac{1}{\sqrt{2n+1}}£¨1+\frac{1}{{a}_{1}}£©£¨1+\frac{1}{{a}_{2}}£©¡­£¨1+\frac{1}{{a}_{n}}£©}$
=$\frac{2n+2}{\sqrt{2n+1}\sqrt{2n+3}}$=$\frac{2£¨n+1£©}{\sqrt{4£¨n+1£©^{2}-1}}$£¾$\frac{2£¨n+1£©}{2£¨n+1£©}$=1£®
¡ßf£¨n£©£¾0£¬
¡àf£¨n+1£©£¾f£¨n£©£¬
¼´f£¨n£©ÊÇËænµÄÔö´ó¶øÔö´ó£¬f£¨n£©µÄ×îСֵΪf£¨1£©=$\frac{2\sqrt{3}}{3}$£¬
¡àʵÊýpµÄ×î´óֵΪ$\frac{2\sqrt{3}}{3}$£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǵȲîÊýÁе͍Ò弰ͨÏʽ£¬µÈ±ÈÊýÁе͍Òå¼°Åж¨·½·¨£¬ÊýÁеĵÝÍÆ¹«Ê½£¬ºã³ÉÁ¢ÎÊÌ⣬ÊÇÊýÁÐÓ뺯ÊýµÄ×ÛºÏÓ¦Óã¬ÄѶȽϴó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ò»»§¾ÓÃñ¸ù¾ÝÒÔÍùµÄÔÂÓõçÁ¿Çé¿ö£¬»æÖÆÁËÔÂÓõçÁ¿µÄƵÂÊ·Ö²¼Ö±·½Í¼£¨ÔÂÓõçÁ¿¶¼ÔÚ25¶Èµ½325¶ÈÖ®¼ä£©ÈçͼËùʾ£¬½«ÔÂÓõçÁ¿ÂäÈë¸ÃÇø¼äµÄƵÂÊ×÷Ϊ¸ÅÂÊ£®ÈôÿÔÂÓõçÁ¿ÔÚ200¶ÈÒÔÄÚ£¨º¬200¶È£©£¬Ôòÿ¶Èµç¼Û0.5Ôª£®ÈôÿÔµÄÓõçÁ¿³¬¹ý200¶È£¬Ôò³¬¹ýµÄ²¿·Öÿ¶Èµç¼Û0.6Ôª£®¼ÇX£¨µ¥Î»£º¶È£¬25¡ÜX¡Ü325£©Îª¸ÃÓû§Ï¸öÔµÄÓõçÁ¿£¬T£¨µ¥Î»£ºÔª£©ÎªÏ¸öÔÂËù½ÉÄɵĵç·Ñ£®
£¨1£©¹À¼Æ¸ÃÓû§µÄÔÂÓõçÁ¿µÄƽ¾ùÖµ£¨Í¬Ò»×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨2£©½«T±íʾΪXµÄº¯Êý£»
£¨3£©¸ù¾ÝÖ±·½Í¼¹À¼ÆÏ¸öÔÂËù½ÉÄɵĵç·ÑT¡Ê[37.5£¬115£©µÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªµãA£¨2£¬m£©£¬B£¨1£¬2£©£¬C£¨3£¬1£©Èô$\overrightarrow{AB}$•$\overrightarrow{CB}$=|$\overrightarrow{AC}$|£¬ÔòʵÊýmµÈÓÚ£¨¡¡¡¡£©
A£®1B£®$\frac{5}{3}$C£®2D£®$\frac{7}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®º¯Êýy=£¨$\frac{1}{3}$£© |x|-1µÄµ¥µ÷ÔöÇø¼äΪ£¨-¡Þ£¬0£©£¨Òà¿Éд³É£¨-¡Þ£¬0]£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚÇø¼ä£¨0£¬1£©ÖÐËæ»úµØÈ¡³öÁ½¸öÊý£¬ÔòÁ½ÊýÖ®ºÍ´óÓÚ$\frac{5}{6}$µÄ¸ÅÂÊÊÇ$\frac{47}{72}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®³¤·½ÌåABCD-A1B1C1D1ÖУ¬AB=3£¬AD=2£¬CC1=1£¬Ò»ÌõÉþ×Ó´ÓAÑØ×űíÃæÀ­µ½C1£¬ÔòÉþ×ÓµÄ×î¶Ì³¤¶ÈΪ3$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=3x3+2x£¬ÇÒ$a=f£¨ln\frac{3}{2}£©£¬\;b=f£¨{log_2}\frac{1}{3}£©£¬\;c=f£¨{2^{0.3}}£©$£¬Ôò£¨¡¡¡¡£©
A£®c£¾a£¾bB£®a£¾c£¾bC£®a£¾b£¾cD£®b£¾a£¾c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®É輯ºÏM={x|x£¾2}£¬P={x|x£¼3}£¬ÄÇô¡°x¡ÊM»òx¡ÊP¡±ÊÇ¡°x¡ÊM¡±µÄ£¨¡¡¡¡£©
A£®³ä·ÖÌõ¼þµ«·Ç±ØÒªÌõ¼þB£®±ØÒªÌõ¼þµ«·Ç³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®·Ç³ä·ÖÌõ¼þ£¬Ò²·Ç±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÇóÇúÏßy=x2£¨x£¾0£©ÔÚµãA£¨2£¬4£©µÄÇÐÏßÓë¸ÃÇúÏßÒÔ¼°xÖáËùΧ³ÉµÄͼÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸