精英家教网 > 高中数学 > 题目详情
12.设集合M={x|x>2},P={x|x<3},那么“x∈M或x∈P”是“x∈M”的(  )
A.充分条件但非必要条件B.必要条件但非充分条件
C.充分必要条件D.非充分条件,也非必要条件

分析 利用简易逻辑的判断方法即可得出.

解答 解:∵集合M={x|x>2},P={x|x<3},
∴“x∈M或x∈P”是“x∈M”的必要不充分条件.
故选:B.

点评 本题考查了不等式的解法、简易逻辑的判断方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知命题p:?x∈R,x2-a≥0,命题q:?x∈R,x2+2ax+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}前n项和${S_n}={n^2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Tn
(Ⅲ)求使不等式(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)…(1+$\frac{1}{{a}_{n}}$)≥p$\sqrt{2n+1}$对一切n∈N*均成立的最大实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1在Rt△ABC中,∠ABC=90°,D、E分别为线段AB、AC的中点,AB=4,BC=2$\sqrt{2}$.以DE为折痕,将Rt△ADE折起到图2的位置,使平面A′DE⊥平面DBCE,连接A′C,′B,设F是线段A′C上的动点,满足$\overrightarrow{CF}$=λ$\overrightarrow{CA′}$.
(Ⅰ)证明:平面FBE⊥平面A′DC;
(Ⅱ)若二面角F-BE-C的大小为45°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知点P是函数y=sin(2x+θ)图象与x轴的一个交点,A,B为P点右侧同一周期上的最大值和最小值点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=(  )
A.$\frac{\sqrt{3}π^2}{4}$-1B.$\frac{3π^2}{4}$-1C.$\frac{3π^2}{16}$-1D.$\frac{π^2}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,D、E分别是AB、BC的中点,若△DBE的周长是6,则△ABC的周长是(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设α为锐角,若$cos(α+\frac{π}{6})=\frac{3}{5}$,则sin$(α-\frac{π}{12})$=(  )
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图在△ABC中,D是AC边上的点且AB=AD,2AB=$\sqrt{3}$BD,BC=2BD.则cosC的值(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{30}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=a+xln(x+1)(a∈R).
(1)当a=1时,求曲线y=f(x)在x=0处的切线方程;
(2)已知x1∈(-1,0),x2∈(0,+∞),且x1,x2是函数F(x)=$\frac{f(x)}{x}$的两个极值点,试证明:?m∈(-1,0),n∈(0,+∞),都有F(m)<F(n)

查看答案和解析>>

同步练习册答案