精英家教网 > 高中数学 > 题目详情
8.长方体ABCD-A1B1C1D1中,AB=3,AD=2,CC1=1,一条绳子从A沿着表面拉到C1,则绳子的最短长度为3$\sqrt{2}$.

分析 按三种不同方式展开长方体的侧面,计算平面图形中三条线段的长,比较得结论.

解答 解:长方体ABCD-A1B1C1D1的表面可如图三种方法展开后,A、C1两点间的距离分别为:
$\sqrt{(1+2)^{2}+{3}^{2}}$=3$\sqrt{2}$,
$\sqrt{(3+1)^{2}+{2}^{2}}$=2$\sqrt{5}$,
$\sqrt{(3+2)^{2}+{1}^{2}}$=$\sqrt{26}$.
三者比较得3$\sqrt{2}$是从点A沿表面到C1的最短距离.
故答案为:3$\sqrt{2}$.

点评 本题考查棱柱的结构特征,考查分类讨论思想,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=$\frac{1}{2}$x2-lnx在其定义域的一个子区间(k-1,k+1)上不是单调函数,则实数k的取值范围是(  )
A.(1,2)B.[1,2)C.[0,2)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“C=5”是“点(2,1)到直线3x+4y+C=0的距离为3”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列不等式结论成立的是(  )
A.a+b>c+d⇒a>c且b>dB.ac2>bc2⇒a>b
C.$\frac{c}{a}$>$\frac{b}{d}$⇒ab<cdD.$\sqrt{a}$>$\sqrt{b}$?a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}前n项和${S_n}={n^2}$.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Tn
(Ⅲ)求使不等式(1+$\frac{1}{{a}_{1}}$)(1+$\frac{1}{{a}_{2}}$)…(1+$\frac{1}{{a}_{n}}$)≥p$\sqrt{2n+1}$对一切n∈N*均成立的最大实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦点分别为F1、F2,离心率e=$\frac{\sqrt{2}}{2}$,与双曲线${x^2}-{y^2}=\frac{1}{2}$有相同的焦点.
(I)求椭圆C的标准方程;
(II)过点F1的直线l与该椭圆C交于M、N两点,且|$\overrightarrow{{F}_{2}M}$+$\overrightarrow{{F}_{2}}$N|=$\frac{2\sqrt{26}}{3}$,求直线l的方程.
(Ⅲ)是否存在圆心在原点的圆,使得该圆的任一条切线与椭圆C有两个交点A、B,且OA⊥OB?若存在,写出该圆的方程,否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图1在Rt△ABC中,∠ABC=90°,D、E分别为线段AB、AC的中点,AB=4,BC=2$\sqrt{2}$.以DE为折痕,将Rt△ADE折起到图2的位置,使平面A′DE⊥平面DBCE,连接A′C,′B,设F是线段A′C上的动点,满足$\overrightarrow{CF}$=λ$\overrightarrow{CA′}$.
(Ⅰ)证明:平面FBE⊥平面A′DC;
(Ⅱ)若二面角F-BE-C的大小为45°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,D、E分别是AB、BC的中点,若△DBE的周长是6,则△ABC的周长是(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.
(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;
(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望及方差.

查看答案和解析>>

同步练习册答案