£¨2013•ºÍƽÇøһģ£©ÒÑÖªÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÀëÐÄÂÊΪ
1
2
£¬ËüµÄÒ»¸ö¶¥µãÇ¡ºÃÊÇÅ×ÎïÏßx2=4
3
y
µÄ½¹µã£®
£¨I£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨II£©ÈôA¡¢BÊÇÍÖÔ²CÉϹØxÖá¶Ô³ÆµÄÈÎÒâÁ½µã£¬ÉèP£¨-4£¬0£©£¬Á¬½ÓPA½»ÍÖÔ²CÓÚÁíÒ»µãE£¬ÇóÖ¤£ºÖ±ÏßBEÓëxÖáÏཻÓÚ¶¨µãM£»
£¨III£©ÉèOΪ×ø±êÔ­µã£¬ÔÚ£¨II£©µÄÌõ¼þÏ£¬¹ýµãMµÄÖ±Ïß½»ÍÖÔ²CÓÚS¡¢TÁ½µã£¬Çó
OS
OT
µÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©ÓÉÅ×ÎïÏßx2=4
3
y
µÃ½¹µã(0£¬
3
)
£®ÉèÍÖÔ²·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£®ÓÉÌâÒâ¿ÉµÃb=
3
£¬ÔÙÀûÓÃe=
c
a
=
1-
b2
a2
¼°a2=b2+c2¼´¿ÉµÃ³ö£»
£¨2£©ÓÉÌâÒâ¿ÉÖªÖ±ÏßPAµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßPAµÄ·½³ÌΪy=k£¨x+4£©£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢¼´¿ÉµÃµ½¸ùÓëϵÊýµÄ¹Øϵ£®ÉèµãA£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòB£¨x1£¬-y1£©£®Ö±ÏßBEµÄ·½³ÌΪy-(-y2)=
y2+y1
x2-x1
(x-x2)
£®°Ñy1£¬y2·Ö±ðÓÃx1£¬x2±íʾ£¬ÔÚ´úÈëÖ±ÏßBEµÄ·½³Ì¼´¿ÉµÃ³ö£»
£¨3£©µ±¹ýµãMµÄÖ±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßSTµÄ·½³ÌΪy=m£¨x+1£©£¬ÇÒS£¨x3£¬y3£©£¬T£¨x4£¬y4£©ÔÚÍÖÔ²CÉÏ£¬ÓëÍÖÔ²µÄ·½³ÌÁªÁ¢µÃµ½¸ùÓëϵÊýµÄ¹Øϵ¼°Åбðʽ£¬ÔÙÀûÓÃÏòÁ¿µÄÊýÁ¿»ý
OS
OT
£¬¼´¿ÉµÃ³öÆäÆäÖз¶Î§£®µ±¹ýµãMµÄÖ±ÏßбÂʲ»´æÔÚʱ£¬±È½Ï¼òµ¥£®
½â´ð£º£¨1£©½â£ºÓÉÅ×ÎïÏßx2=4
3
y
µÃ½¹µã(0£¬
3
)
£®
ÉèÍÖÔ²·½³ÌΪ
x2
a2
+
y2
b2
=1(a£¾b£¾0)
£®
ÓÉÌâÒâ¿ÉµÃ
e=
c
a
=
1-
b2
a2
=
1
2
b=
3
a2=b2+c2
£¬½âµÃ
a=2
b=
3
c=1
£¬
¡àÍÖÔ²µÄ·½³ÌΪ
x2
4
+
y2
3
=1
£®
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖªÖ±ÏßPAµÄбÂÊ´æÔÚ£¬ÉèÖ±ÏßPAµÄ·½³ÌΪy=k£¨x+4£©£¬
ÁªÁ¢
y=k(x+4)
x2
4
+
y2
3
=1
£¬ÏûÈ¥yµÃµ½£¨4k2+3£©x2+32k2x+64k2-12=0   ¢Ù
ÉèµãA£¨x1£¬y1£©£¬E£¨x2£¬y2£©£¬ÔòB£¨x1£¬-y1£©£®
Ö±ÏßBEµÄ·½³ÌΪy-y2=
y2+y1
x2-x1
(x-x2)
£®
Áîy=0£¬Ôòx=x2-
y2(x2-x1)
y2+y1
£¬
°Ñy1=k£¨x1+4£©£¬y2=k£¨x2+4£©´úÈëÉÏʽ²¢ÕûÀíµÃx=
2x1x2+4(x1+x2)
x1+x2+8
£®¢Ú
ÓÉ¢ÙµÃx1+x2=-
32k2
4k2+3
£¬x1x2=
64k2-12
4k2+3
£¬½«Æä´úÈë¢Ú²¢ÕûÀíµÃx=
(128k2-24)+4¡Á(-32k2)
-32k2+8(4k2+3)
=-1
£®
¡àÖ±ÏßBEÓëxÖáÏཻÓÚ¶¨µãM£¨-1£¬0£©£®
£¨3£©µ±¹ýµãMµÄÖ±ÏßбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßSTµÄ·½³ÌΪy=m£¨x+1£©£¬ÇÒS£¨x3£¬y3£©£¬T£¨x4£¬y4£©ÔÚÍÖÔ²CÉÏ£¬
ÁªÁ¢
y=m(x+1)
x2
4
+
y2
3
=1
µÃ£¨4m2+3£©x2+8m2x+4m2-12=0£¬
Ôò¡÷=£¨8m2£©2-4£¨4m2+3£©£¨4m2-12£©=144£¨m2+1£©£¾0£®
¡àx3+x4=-
8m2
4m2+3
£¬x3x4=
4m2-12
4m2+3
£¬
¡ày3y4=m2(x3+1)(x4+1)=m2£¨x3x4+x3+x4+1£©=-
9m2
4m2+3
£®
¡à
OS
OT
=x3x4+y3y4=-
5m2+12
4m2+3
=-
5
4
-
33
4(4m2+3)
£®
ÓÉm2¡Ý0µÃ
OS
OT
¡Ê[-4£¬-
5
4
)
£®
µ±¹ýµãMµÄÖ±ÏßбÂʲ»´æÔÚʱ£¬Ö±ÏßSTµÄ·½³ÌΪx=-1£¬S(-1£¬
3
2
)
£¬T(-1£¬-
3
2
)
£¬
´Ëʱ£¬
OS
OT
=-
5
4
£¬
¡à
OS
OT
µÄÈ¡Öµ·¶Î§Îª[-4£¬-
5
4
]
£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁËÍÖÔ²¡¢Å×ÎïÏߵıê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëԲ׶ÇúÏßÏཻÎÊÌâת»¯ÎªÒ»Ôª¶þ´Î·½³ÌµÃ¸ùÓëϵÊýµÄ¹Øϵ¡¢Ö±Ïß¹ý¶¨µãÎÊÌâ¡¢ÏòÁ¿ÏàµÈ¼°ÆäÊýÁ¿»ýµÈ»ù´¡ÖªÊ¶¼°»ù±¾¼¼ÄÜ£¬¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼Ïë·½·¨¡¢ÍÆÀíÄÜÁ¦ºÍ¼ÆËãÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºÍƽÇøһģ£©ÔÚ¸´Æ½ÃæÄÚ£¬¸´Êý
2i
1-i
¶ÔÓ¦µÄµãµÄ×ø±êΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºÍƽÇøһģ£©Èôf£¨x£©=asinx+b£¨a£¬bΪ³£Êý£©µÄ×î´óÖµÊÇ5£¬×îСֵÊÇ-1£¬Ôò
b
a
µÄֵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºÍƽÇøһģ£©ÔÚÈçͼËùʾµÄ¼ÆËã1+3+5+¡­+2013µÄÖµµÄ³ÌÐò¿òͼÖУ¬ÅжϿòÄÚÓ¦ÌîÈ루¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºÍƽÇøһģ£©¼ºÖªº¯Êýf£¨x+1£©ÊÇżº¯Êý£¬µ±x¡Ê£¨-¡Þ£¬1£©Ê±£¬º¯Êýf£¨x£©µ¥µ÷µÝ¼õ£¬Éèa=f£¨-
1
2
£©£¬b=f£¨-1£©£¬c=f£¨2£©£¬Ôòa£¬b£¬cµÄ´óС¹ØϵΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ºÍƽÇøһģ£©ÈôÅ×ÎïÏßy2=axÉϺãÓйØÓÚÖ±Ïßx+y-1=0¶Ô³ÆµÄÁ½µãA£¬B£¬ÔòaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸