精英家教网 > 高中数学 > 题目详情
8.已知f(x)=x2+2(a-1)x+2在(-∞,4]上单调递减,则a的取值范围是(-∞,-3].

分析 抛物线f(x)=x2+2(a-1)x+2的开口向上,对称轴方程是x=1-a,且f(x)=x2+2(a-1)x+2在(-∞,4]上单调递减,所以1-a≥4,由此能求出a的取值范围.

解答 解:∵抛物线f(x)=x2+2(a-1)x+2的开口向上,
对称轴方程是x=1-a,
且f(x)=x2+2(a-1)x+2在(-∞,4]上单调递减,
∴1-a≥4,
解得a≤-3.
故答案为:(-∞,-3].

点评 本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{x^2}{4}+{y^2}=1$与直线l:x-y+λ=0相切.
(1)求λ的值;
(2)设直线$m:x-y+4\sqrt{5}=0$,求椭圆上的点到直线m的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列程序执行后输出的结果是(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的偶函数满足f(x+2)=f(x),且在[0,1]上单调递增,设a=f(3),$b=f(\sqrt{2})$,c=f(2),则a,b,c的大小关系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.己知函数f(x)=x3+ax+$\frac{1}{4}$,g(x)=-lnx用min{m,n}表示m,n中的最小值,设函数h(x)=min﹛(f(x),g(x)} (x>0),则当-$\frac{5}{4}$<a<-$\frac{3}{4}$时,h(x)的零点个数有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.有一个容量为100的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为(  )
A.18B.36C.54D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.椭圆C:$\frac{x^2}{4}+\frac{y^2}{3}=1$,过右焦点F且斜率为1的直线L与椭圆C相交于A,B两点
(1)求右焦点F的坐标
(2)求弦长AB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线y2=2x,P是抛物线的动弦AB的中点.
(1)当P的坐标为(2,3)时,求直线AB的方程;
(2)当直线AB的斜率为1时,求线段AB的垂直平分线在x轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩.例如:表中地理成绩为A等级的共有14+40+10=64人,已知x与y均为A等级的概率是0.07.
x
人数
y
ABC
Al44010
Ba36b
C28834
(Ⅰ)设在该样本中,数学成绩优秀率是30%,求a,b的值;
(Ⅱ)在地理成绩为B等级的学生中,已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.

查看答案和解析>>

同步练习册答案