【题目】设向量
,
的夹角为60°且|
|=|
|=1,如果
,
,
.
(1)证明:A、B、D三点共线.
(2)试确定实数k的值,使k的取值满足向量
与向量
垂直.
【答案】
(1)解:∵
∴
即
共线,
∵
有公共点B
∴A,B,D三点共线
(2)解:∵
∴ ![]()
![]()
∵|
|=|
|=1,且
=
cos60°= ![]()
∴ ![]()
解得 ![]()
【解析】(1)利用向量共线证明三点共线,先将
表示为
与
的和,再证明
,最后说明
有公共点B,即可证明A、B、D三点共线;(2)因为向量
,
的夹角为60°且|
|=|
|=1,所以
=
,故可将向量
,
作为基底,研究
与向量
垂直的问题,利用向量垂直的充要条件列方程即可得k值
【考点精析】根据题目的已知条件,利用向量的共线定理和数量积判断两个平面向量的垂直关系的相关知识可以得到问题的答案,需要掌握设
,
,其中
,则当且仅当
时,向量
、
共线;若平面
的法向量为
,平面
的法向量为
,要证
,只需证
,即证
;即:两平面垂直
两平面的法向量垂直.
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为x=﹣2,且直线l与x轴交于点M,圆O:x2+y2=1与x轴交于A,B两点.
(1)过M点的直线l1交圆于P、Q两点,且圆孤PQ恰为圆周的
,求直线l1的方程;
(2)若椭圆中a,c满足
=2,求中心在原点,且与圆O恰有两个公共点的椭圆方程;
(3)过M点作直线l2与圆相切于点N,设(2)中椭圆的两个焦点分别为F1 , F2 , 求三角形△NF1F2面积. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|=
,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校在高二年级实行选课走班教学,学校为学生提供了多种课程,其中数学学科提供5种不同层次的课程,分别称为数学1、数学2、数学3、数学4、数学5,每个学生只能从5种数学课程中选择一种学习,该校高二年级1800名学生的数学选课人数统计如表:
课程 | 数学1 | 数学2 | 数学3 | 数学4 | 数学5 | 合计 |
选课人数 | 180 | 540 | 540 | 360 | 180 | 1800 |
为了了解数学成绩与学生选课情况之间的关系,用分层抽样的方法从这1800名学生中抽取10人进行分析.
(1)从选出的10名学生中随机抽取3人,求这3人中至少有2人选择数学2的概率;
(2)从选出的10名学生中随机抽取3人,记这3人中选择数学2的人数为
,选择数学1的人数为
,设随机变量
,求随机变量
的分布列和数学期望
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于( ) ![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,椭圆C过点A
,两个焦点为(﹣1,0),(1,0).
(1)求椭圆C的方程;
(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C 的对边分别是a,b,c,已知 b+acos C=0,sin A=2sin(A+C).
(1)求角C的大小;
(2)求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个推导过程:
①∵a,b∈R+,∴(
)+(
)≥2
=2;
②∵x,y∈R+,∴lgx+lgy≥2
;
③∵a∈R,a≠0,∴(
)+a≥2
=4;
④∵x,y∈R,xy<0,∴(
)+(
)=﹣[(﹣(
))+(﹣(
))]≤﹣2
=﹣2.
其中正确的是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com