精英家教网 > 高中数学 > 题目详情
已知集合A={x|y=lg(-x2+3x-2)},集合B={y|y=x2-2x+a,x∈R}
(1)若A∩B≠∅,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.
考点:并集及其运算,交集及其运算
专题:集合
分析:求出A中x的范围确定出A,求出B中y的范围表示出B,
(1)根据两集合的交集不为空集,确定出a的范围即可;
(2)根据A与B并集为B,得到A为B的子集,确定出a的范围即可.
解答: 解:由A中y=lg(-x2+3x-2),得到-x2+3x-2>0,
即x2-3x+2<0,
解得:1<x<2,即A=(1,2);
由B中y=x2-2x+a=(x-1)2+a-1≥a-1,得到B=[a-1,+∞),
(1)∵A∩B≠∅,
∴a-1<2,即a<3;
(2)∵A∪B=B,
∴A⊆B,
则a-1≤1,即a≤2.
点评:此题考查了并集及其运算,熟练掌握并集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.
表1:甲流水线样本频数分布表
产品重量(克) 频数
(490,495] 6
(495,500] 8
(500,505] 14
(505,510] 8
(510,515] 4
(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据完成下面2×2列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
甲流水线  乙流水线   合计
合格品 a= b=
不合格品 c= d=
合 计 n=
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d;临界值表供参考:
P(k2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),
(1)求数列{an}的通项公式;
(2)令bn=
1
anan+1
,求数列bn的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

生产A,B两种产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:
测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]
产品A 8 12 40 32 8
产品B 7 18 40 29 6
(Ⅰ)试分别估计产品A、产品B为正品的概率;
(Ⅱ)生产一产品件A,若是正品可盈利50元,若是次品则亏损10元;生产一件产品B,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下:
①求生产5件产品B所获得的利润不少于300元的概率;
②求生产1件产品A和1件产品B所得的总利润为30元或90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求过点P(-3,-
3
2
),且被圆C:x2+y2=25截得的弦长等于8的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
5
5
,点(1,
2
5
5
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ) 在x轴上是否存在一定点E,使得对椭圆C的任意一条过E的弦AB,
1
|EA|2
+
1
|EB|2
为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设计求满足1+2+22+23+…+2n-1>10000的最小正整数n的程序框图,并编写相应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

写出符合下列条件的曲线的标准方程
(1)顶点为坐标原点,焦点在y轴上,点M(a,2)到准线的距离为3,求抛物线的标准方程;
(2)与双曲线
x2
4
-
y2
3
=1有共同的渐近线且过点A(2,-3),求双曲线标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L:
x=2+tcosα
y=1+ysinα
(t为参数,α为直线的倾斜角)交椭圆
x2
16
+
y2
4
=1于A、B两点,若点M(2,1)恰好为线段AB的中点,求直线L的斜率.

查看答案和解析>>

同步练习册答案