精英家教网 > 高中数学 > 题目详情
求过点P(-3,-
3
2
),且被圆C:x2+y2=25截得的弦长等于8的直线方程.
考点:直线与圆相交的性质
专题:直线与圆
分析:当直线的斜率不存在,即x=-3时,检验符合题意.若直线的斜率存在时,设直线的方程:y+
3
2
=k(x+3)
,由题意可知弦心距为3求得k的值,可得直线的方程,综合可得结论.
解答: 解:若直线的斜率不存在,即x=-3时,
由(-3)2+y2=25解得y1=4,y2=-4,则弦长|y1-y2|=8,符合题意.
若直线的斜率存在时,设直线的方程:y+
3
2
=k(x+3)
,即kx-y+3k-
3
2
=0

由题意可知弦心距为
52-(
8
2
)
2
=3
,可得
|k×0-0+3k-
3
2
|
k2+1
=3
,解得k=-
3
4

直线方程:3x+4y+15=0,
综上所述:直线方程是x+3=0,或3x+4y+15=0.
点评:本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了分类讨论的数学思想,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=PC=AC=4,AB=BC=2
2

(1)求证:平面ABC⊥平面APC;
(2)求直线PA与平面PBC所成角的正弦值;
(3)若动点M在底面△ABC内(包含边界),二面角M-PA-C的余弦值为
3
10
10
,求BM的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是以公比为q的等比数列,Sn(n∈N*)是其前n项和,且S3,S9,S6成等差数列.
(1)求证:a2,a8,a5也成等差数列;
(2)判断以a2,a8,a5为前三项的等差数列的第四项是否也是数列{an}中的项?若是,求出这一项;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=-
4
5
,α∈(
π
2
2
).
(1)求tanα的值; 
(2)求cos(
α
2
+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*
(Ⅰ)设bn=an+1-2an,求证数列{bn}是等比数列;
(Ⅱ)设cn=
an
2n
,求证数列{cn}是等差数列;
(Ⅲ)求数列{an}的通项公式和前n项和公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lg(-x2+3x-2)},集合B={y|y=x2-2x+a,x∈R}
(1)若A∩B≠∅,求实数a的取值范围;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an的首项a1=2,且an=2an-1-1(n?N+,n≥2).
(1)求数列{an}的通项公式;
(2)求数列{nan-n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的短半轴长为1,点M(2,t)(t>0)是右准线x=
a2
c
上的动点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设F为椭圆的右焦点,过F作OM的垂线与以OM为直径的圆交于点N,求ON的长.
(Ⅲ)求以OM为直径且被直线3x-4y-5=0截得的弦长为2的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前10项和S10=-40,前9项和S9=-27.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2n,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案