精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的前10项和S10=-40,前9项和S9=-27.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=an+2n,求数列{bn}的前n项和Tn
考点:数列的求和,等差数列的通项公式
专题:
分析:(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求出bn=an+2n,利用分组求和法,即可求数列{bn}的前n项和Tn
解答: 解:(Ⅰ)∵等差数列{an}的前10项和S10=-40,前9项和S9=-27,
9a1+
9×8
2
d=-27
10a1+
10×9
2
d=-40
,解得a1=5,d=-2,
则数列{an}的通项公式an=5-2(n-1)=7-2n;
(Ⅱ)∵bn=an+2n=7-2n+2n
∴数列{bn}的前n项和Tn=na1+
n(n-1)
2
d+
2(1-2n)
1-2
=5n-n(n-1)+2n+1-2=2n+1+6n+n2-2.
点评:本题主要考查等差数列的通项公式以及利用分组法进行求等差数列和等比数列的前n项和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求过点P(-3,-
3
2
),且被圆C:x2+y2=25截得的弦长等于8的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为1的圆O,∠AOB=∠BOC=∠COA=
3
,点A0,B0,C0分别是半径OA、OB、CO上的动点,且OA0=OB0=OC0,分别过A0,B0,C0作半径OA、OB、CO的垂线,交圆O与A1,A2,B1,B2,C1,C2,过A2,B1分别作OA、OB的平行线A2M和B1M交于点M,过B2,C1分别作OB、OC的平行线B2N和C1N交于点N,过C2,A1分别作OC、OA的平行线C2P和A1P交于点P,由A1A2MB1B2NC1C2P围成图所示的平面区域(阴影部分),记它的面积为y,设∠A2OA=θ,用y=f(θ)表示y关于θ的函数.
(1)设θ∈(0,
π
3
],求y=f(θ)的解析式;
(2)在(1)的条件下,求y=f(θ)的最大值,并求出当函数取最大值是时tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为原点,A(x1,y1),B(x2,y2)是椭圆C:
x2
m
+
y2
4
=1(0<m<4)上任意两点,向量
p
=(x1
y1
2
),
q
=(x2
y2
2
)且
p
q
,椭圆的离心率e=
3
2
,求△AOB的面积是否为定值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过点M(-
3
,0),且与圆N:(x-
3
2+y2=16相内切.
(Ⅰ)求动圆的圆心P的轨迹方程;
(Ⅱ)已知点A(2,0),点B(1,0),过点B且斜率为k1(k1≠0)的直线l与(Ⅰ)中的轨迹相交于C、D两点,直线AC、AD分别交直线x=3于E、F两点,线段EF的中点为Q.记直线QB的斜率为k2,求证:k1•k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线L:
x=2+tcosα
y=1+ysinα
(t为参数,α为直线的倾斜角)交椭圆
x2
16
+
y2
4
=1于A、B两点,若点M(2,1)恰好为线段AB的中点,求直线L的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-
3
y+1=0,一个圆的圆心C在x轴正半轴上,且该圆与直线l和y轴均相切.
(1)求该圆的方程;
(2)若直线:mx+y+
1
2
m=0与圆C交于A,B两点,且|AB|=
3
,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:
①△DBC是等边三角形;  
②AC⊥BD;  
③三棱锥D-ABC的体积是
2
6

④AB与CD所成的角是60°.
其中正确命题的序号是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-8|,若a≤b≤0,且f(a)=f(b),则a+b的最小值是
 

查看答案和解析>>

同步练习册答案