【题目】中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆O,其“优美函数“有无数个”;
②函数
可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是( )![]()
A.①③
B.①③④
C.②③
D.①④
【答案】A
【解析】解:过圆心的直线都可以将圆的周长和面积同时平分,
故对于任意一个圆O,其“优美函数”有无数个,故①正确;
函数
的大致图象如图1,故其不可能为圆的“优美函数”;∴②不正确;
将圆的圆心放在正弦函数y=sinx的对称中心上,
则正弦函数y=sinx是该圆的“优美函数”;
故有无数个圆成立,故③正确;
函数y=f(x)的图象是中心对称图形,则y=f(x)是“优美函数”,
但函数y=f(x)是“优美函数”时,图象不一定是中心对称图形,如图2,![]()
故选:A.
过圆心的直线都可以将圆的周长和面积同时平分,故①正确;
作函数
的大致图象,从而判断②的正误;
将圆的圆心放在正弦函数y=sinx的对称中心上,则正弦函数y=sinx是该圆的“优美函数”;即可判断③的正误;
函数y=f(x)的图象是中心对称图形,则y=f(x)是“优美函数”,但函数y=f(x)是“优美函数”时,图象不一定是中心对称图形,作图举反例即可.
科目:高中数学 来源: 题型:
【题目】已知F2、F1是双曲线
=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为( )
A.3
B.![]()
C.2
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(1)应收集多少位女生样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:
.估计该校学生每周平均体育运动时间超过4个小时的概率.
![]()
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有
的把握认为“该校学生的每周平均体育运动时间与性别有关”.
附:
![]()
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
为参数),若以原点
为极点,
轴正半轴为极轴建立极坐标系,已知圆
的极坐标方程为
,设
是圆
上任一点,连结
并延长到
,使
.
(1)求点
轨迹的直角坐标方程;
(2)若直线
与点
轨迹相交于
两点,点
的直角坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费
为此,政府调查了100户居民的月平均用电量
单位:度
,以
,
,
,
,
,
分组的频率分布直方图如图所示.
根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量
的值;
用频率估计概率,利用
的结果,假设该市每户居民月平均用电量X服从正态分布![]()
估计该市居民月平均用电量介于
度之间的概率;
利用
的结论,从该市所有居民中随机抽取3户,记月平均用电量介于
度之间的户数为
,求
的分布列及数学期望
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加
元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费
元,未租出的车每辆每月需要维护费
元.
(1)当每辆车的月租金定为
元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三某班有60名学生(其中女生有20名),三好学生占
,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com