【题目】现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是
A.152B.126C.90D.54
【答案】B
【解析】
试题根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.
解:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A33=18种;
②甲乙不同时参加一项工作,进而又分为2种小情况;
1°丙、丁、戌三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;
2°甲或乙与丙、丁、戌三人中的一人承担同一份工作:A32×C31×C21×A22=72种;
由分类计数原理,可得共有18+36+72=126种,
故选B.
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人到户外植树,三人分工合作,一人挖坑和填土,一人施肥,一人浇水,他们的身高各不同,现了解到以下情况: ①甲不是最高的;
②最高的没浇水;
③最矮的施肥;
④乙不是最矮的,也没挖坑和填土.
可以判断丙的分工是(从挖坑,施肥,浇水中选一项).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a﹣x2(1≤x≤2)与g(x)=2x+1的图象上存在关于x轴对称的点,则实数a的取值范围是( )
A.[﹣2,﹣1]
B.[﹣1,1]
C.[1,3]
D.[3,+∞]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用二分法找函数f(x)=2x+3x﹣7在区间[0,4]上的零点近似值,取区间中点2,则下一个存在零点的区间为( )
A.(0,1)
B.(0,2)
C.(2,3)
D.(2,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是
A. 甲B. 乙C. 丙D. 无法预测
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},则M∩N=( )
A.[﹣3,2)B.(﹣3,2)C.(﹣1,0]D.(﹣1,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com