精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2+lnx,求证:当x>1时,f(x)<
2
3
x3
考点:利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:设g(x)=
2
3
x3-f(x)=
2
3
x3-
1
2
x2-lnx,则g′(x)=2x2-x-
1
x
,利用导数性质能证明当x>1时,
1
2
x2+lnx<
2
3
x3
解答: 证明:设g(x)=
2
3
x3-f(x)=
2
3
x3-
1
2
x2-lnx,
∴g′(x)=2x2-x-
1
x

∵当x>1时,g′(x)=
(x-1)(2x2+x+1)
x
>0,
∴g(x)在(1,+∞)上为增函数,
∴g(x)>g(1)=
1
6
>0,
∴当x>1时,
1
2
x2+lnx<
2
3
x3
点评:本题考查不等式的证明,解题时要认真审题,注意构造法和导数性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

中心在坐标原点,焦点在x轴上的双曲线的一条渐近线的方程为y=
3
x,且焦点到渐近线的距离为
3
,则双曲线的方程为(  )
A、x2-
y2
3
=1
B、
x2
3
-
y2
9
=1
C、3x2-y2=1
D、
x2
3
-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

设M是由满足下列条件的函数f(x)(x∈R)构成的集合:①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.
(Ⅰ)判断函数f(x)=
x
2
+
cos
8
-
1
8
是否是集合M中的元素,并说明理由;
(Ⅱ)若函数f(x)是集合M中的一个元素,x0是方程f(x)-x=0的实数根,求证:对于定义域中的任意两个实数x1,x2,当|x0-x1|<1且|x2-x0|<1时,不等式|f(x2)-f(x1)|<2成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)=
1
3
x3+cx+3,f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4ln x-f′(x),求g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mx-
m-1
x
-lnx,m∈R,函数g(x)=
1
cosθ•x
+lnx在[1,+∞)上为增函数,且θ∈[0,
π
2
).
(1)求θ的取值范围;c
(2)若h(x)=f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围;
(3)若在[1,e]上至少存在一个x0,使得h(x0)>
2e
x0
成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-1)ex-kx2(k∈R).
(1)当k=1时,求函数f(x)的单调区间;
(2)当k∈(
1
2
,1]时,求用k表示函数f(x)在(0,+∞)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+a,g(x)=2ax+1,a∈R
(1)证明:方程f(x)=g(x)恒有两个不相等的实数根;
(2)若函数f(x)在(0,2)上无零点,请你探究函数y=|g(x)|在(0,2)上的单调性;
(3)设F(x)=f(x)-g(x),若对任意的x∈(0,1),恒有:-1<F(x)<1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x
3
 
+a
x
2
 
+bx

(1)若函数f(x)在区间[-1,1),(1,3]内各有一个极值点,当以a2-b取最大值时,求函数f(x)的表达式;
(2)若a=-1,在曲线y=f(x)上是否存在唯一的点P,使曲线在点P处的切线l与曲线只有一个公共点?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线S:y=x3-6x2-x+6,求S上斜率最小的切线方程.

查看答案和解析>>

同步练习册答案