精英家教网 > 高中数学 > 题目详情
1.已知数列{an}各项为正数,Sn是其前n项和,且${s_n}=2{n^2}-30n$.求a1及an

分析 Sn=2n2-30n,可得n=1时,a1=S1.n≥2时,an=Sn-Sn-1

解答 解:∵Sn=2n2-30n,
∴n=1时,a1=S1=2-30=-28.
n≥2时,an=Sn-Sn-1=2n2-30n-[2(n-1)2-30(n-1)]=4n-32,(n=1时也成立).
∴a1=-28;
∴an=4n-32

点评 本题考查了数列递推关系、数列通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.100个样本数据的频率分布直方图如图所示,则样本数据落在[70,90)的频数等于65.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从其中随机抽取的50份调查问卷,得到了如下的列联表:
同意限定区域停车不同意限定区域停车合计
男生5
女生10
合计50
已知在抽取的50份调查问卷中随机抽取一份,抽到不同意限定区域停车问卷的概率为$\frac{2}{5}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为是否同意限定区域停车与家长的性别有关?请说明理由;
(Ⅲ)学校计划在同意限定区域停车的家长中,按照性别分层抽样选取9人,在上学、放学期间在学校门口维持秩序.已知在抽取的男性家长中,恰有3位日常开车接送孩子.现从抽取的男性家长中再选取2人召开座谈会,求这两人中至少有一人日常开车接送孩子的概率.
附临界值表及参考公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.△ABC中,角A,B,C所对的边分别是a,b,c,若角A,B,C依次成等差数列,且$a=1,c=\sqrt{3}$,则S△ABC等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=x-\frac{a}{x}-(a+1)lnx,a∈$R.
(1)若f(x)在定义域内为增函数,求a的值.
(2)若f(x)在[1,e]上的最小值为-2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(4,1),$\overrightarrow{OC}$=(4,5),则$\overrightarrow{AB}$与$\overrightarrow{AC}$夹角的余弦值为$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点M是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的一点,F1,F2分别为C的左右焦点,|F1F2|=2$\sqrt{3}$,∠F1MF2=60°,△F1MF2的面积为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设过椭圆右焦点F2的直线l和椭圆交于两点A,B,是否存在直线l,使得△OAF2的面积与△OBF2的面积的比值为2?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线ax-y+3=0与圆(x-2)2+(y-a)2=4相交于M,N两点,若|MN|≥2$\sqrt{3}$,则实数a的取值范围是a≤-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知长方体AC1中,AD=AB=2,AA1=1,E为D1C1的中点,如图所示.
(Ⅰ)在所给图中画出平面C1BD1与平面B1EC的交线(不必说明理由);
(Ⅱ)证明:BD1∥平面B1EC;
(Ⅲ)求BD1中点到平面B1EC的距离.

查看答案和解析>>

同步练习册答案