精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-3ax+2(其中a为常数)有极大值18.
(Ⅰ)求a的值;
(Ⅱ)若曲线y=f(x)过原点的切线与函数g(x)=b-lnx的图象有两个交点,试求b的取值范围.
(Ⅰ)f′(x)=3x2-3a,又函数f(x)有极大值,
∴令f′(x)>0,得x<-
a
或x
a

∴f(x)在(-∞,-
a
),(
a
,+∞)上递增,在(-
a
a
)上递减,
∴f(x)极大值=f(-
a
)=18,解得a=4.
(Ⅱ)设切点(x0x03-12x0+2),则切线斜率k=f′(x0)=3x02-12
所以切线方程为y-x03+12x0-2=(3x02-12)(x-x0),
将原点坐标代入得x0=1,所以k=-9.
切线方程为y=-9x.
y=-9x
y=b-lnx
得lnx-9x-b=0.
设h(x)=lnx-9x-b,
则令h′(x)=
1
x
-9=
1-9x
x
>0,得0<x<
1
9

所以h(x)在(0,
1
9
)上递增,在(
1
9
,+∞)上递减,
所以h(x)最大值=h(
1
9
)=-ln9-1-b.
若lnx-9x-b=0有两个解,则h(x)最大值>0,
得b<-ln9-1.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案