精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-(a+2)x+alnx其中常数a>0
(1)当a>2时,求函数f(x)在x∈(0,a)上的极大值和极小值;
(2)设定义在D上的函数y=h(x)在点P(x0,h(x0))处的切线方程为l:y=g(x),当x≠x0时,若
h(x)-g(x)x-x0
>0
在D内恒成立,则称P为函数y=h(x)的“类对称点”,当a=4时,试问y=f(x)是否存在“类对称点”,若存在,请至少求出一个“类对称点”的横坐标,若不存在,说明理由.
分析:(1)先求出导数f(x)=0时的x的值,再判断是否是极值点,若是即可求出极值;
(2)利用“类对称点”的定义,证明
f(x)-g(x)
x-x0
>0
在(0,+∞)上恒成立?
f(x)-f(m)
x-m
-f(m)>0
在(0,+∞)恒成立即可.
解答:解:(1)由函数f(x)=x2-(a+2)x+alnx(常数a>2)可知:其定义域为(0,+∞).
f(x)=2x+
a
x
-(a+2)
=
2x2-(a+2)x+a
x
=
2(x-
a
2
)(x-1)
x

令f(x)=0,解得x=
a
2
或1

∵a>2,∴
a
2
>1

列表如图:
由表格可知:当x=1时,函数f(x)取得极大值,且f(1)=-a-1;当x=
a
2
时,函数f(x)取得极小值,且f(
a
2
)=alna-a(ln2+1)-
a2
4

(2)当a=4时,函数f(x)=x2-6x+4lnx存在“类对称点”,为点P(
2
,2-6
2
+2ln2)

当a=4时,f(x)=x2-6x+4lnx,∴f(x)=2x-6+
4
x

设切点P(m,f(m)),则切线的斜率为f(m)=2m-6+
4
m

则切线的方程为y-f(m)=f(m)(x-m),
f(x)-g(x)
x-x0
>0
在(0,+∞)上恒成立?
f(x)-f(m)
x-m
-f(m)>0
在(0,+∞)恒成立.(*)
其中
f(x)-f(m)
x-m
为过点(x,f(x))、(m,f(m))的割线的斜率,而f(m)为过切点P(m,f(m))的切线的斜率.
要使(*)式恒成立,f(x)必取得最小值.
∵[f(x)]=2-
4
x2
=
2(x+
2
)(x-
2
)
x2
,令f(x)=0,解得x=
2

由表格可知:当且仅当x=
2
时,f(x)取得极小值,也是最小值.
即当x=
2
时,
f(x)-g(x)
x-x0
>0
在(0,+∞)上恒成立.
(
2
,2-6
2
+2ln2)
是函数f(x)的一个“类对称点”.
点评:熟练掌握利用导数研究函数的单调性和极值的方法及正确理解“类对称点”的意义是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案