精英家教网 > 高中数学 > 题目详情
2.若点P在曲线y=x3-3x2+(3+$\sqrt{3}$)x+$\frac{3}{4}$上移动,经过点P的切线的倾斜角为α,则角α的取值范围是(  )
A.[0,π]B.[0,$\frac{π}{2}$)∪[$\frac{2π}{3}$,π)C.[$\frac{π}{3}$,$\frac{π}{2}$)D.[0,$\frac{π}{2}$)∪($\frac{π}{2}$,$\frac{2π}{3}$)

分析 先求出函数的导数y′的解析式,通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,来求出倾斜角的取值范围.

解答 解:∵函数的导数y′=3x2-6x+3+$\sqrt{3}$=3(x-1)2+$\sqrt{3}$≥$\sqrt{3}$,
∴tanα≥$\sqrt{3}$,又 0≤α<π,
∴$\frac{π}{3}$≤α<$\frac{π}{2}$,
故选 C.

点评 本题考查函数的导数的几何意义,直线的倾斜角和斜率的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若直线l的方向向量为$\overrightarrow{a}$,平面α的法向量为$\overrightarrow{n}$,则满足l∥α的向量$\overrightarrow{a}$与$\overrightarrow{n}$可能为(  )
A.$\overrightarrow{a}$=(1,3,5),$\overrightarrow{n}$=(1,0,1)B.$\overrightarrow{a}$=(1,0,0),$\overrightarrow{n}$=(-2,0,0)
C.$\overrightarrow{a}$=(1,-1,3),$\overrightarrow{n}$=(0,3,1)D.$\overrightarrow{a}$=(0,2,1),$\overrightarrow{n}$=(-1,0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,$AP=1,AD=\sqrt{3}$,面PAB⊥面ABCD,PA⊥AB,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)若底面ABCD为矩形,三棱椎P-ABD的体积$V=\frac{{\sqrt{3}}}{4}$,求二面角P-BC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在△ABC中,内角A,B,C所对的边分别为a,b,c,且$\frac{sinA}{a}=\frac{{\sqrt{3}cosB}}{b}$.
(1)求角B的大小;
(2)如果b=2,求△ABC面积的最大值,并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.α为第四象限角,则$\frac{sinα}{{|{sinα}|}}+\frac{{|{cosα}|}}{cosα}+\frac{tanα}{{|{tanα}|}}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.下列说法:
①扇形的周长为8cm,面积为4cm2,则扇形的圆心角弧度数为2rad;
②函数y=cos($\frac{3}{2}$x+$\frac{π}{2}$)是奇函数
③若α是第三象限角,则y=$\frac{|sin\frac{α}{2}|}{sin\frac{α}{2}}$+$\frac{|cos\frac{α}{2}|}{cos\frac{α}{2}}$的值为0或-2;
④若sinα=sinβ,则α与β的终边相同;
⑤y=2sin$\frac{3}{2}$x在区间[-$\frac{π}{3}$,$\frac{π}{2}$]上的最小值是-2,最大值是$\sqrt{2}$;
⑥若α、β是第一象限角且α<β,则tanα<tanβ;
其中正确的是①②.(写出所有正确答案)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,角A,B,C的对边为a,b,c,b=3,c=2$\sqrt{6}$,cosB=$\frac{\sqrt{6}}{3}$,则a等于(  )
A.3B.5C.5或3D.5或$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在等差数列{an}中,已知a1+a2+a3=21,a1a2a3=231.
(1)求该数列中a2的值;
(2)求该数列的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算sin(-$\frac{15π}{6}$)cos$\frac{20π}{3}$tan(-$\frac{7π}{6}$)=$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

同步练习册答案