精英家教网 > 高中数学 > 题目详情
2.已知a,b,c分别是△ABC中角A,B,C所对的边,且$(sinB+sinC+sinA)(sinB+sinC-sinA)=\frac{18}{5}sinBsinC$,b和c是关于x的方程x2-9x+25cosA=0的两个根,则△ABC的形状为(  )
A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形

分析 利用正弦定理以及余弦定理求出三角形的边角关系,利用方程的根求解即可.

解答 解:a,b,c分别是△ABC中角A,B,C所对的边,且$(sinB+sinC+sinA)(sinB+sinC-sinA)=\frac{18}{5}sinBsinC$,
由正弦定理可得:(b+c+a)(b+c-a)=$\frac{18}{5}$bc,
可得:b2+c2-a2=$\frac{8}{5}bc$.
由余弦定理可得:cosA=$\frac{4}{5}$.
b和c是关于x的方程x2-9x+25cosA=0的两个根,可得b+c=9,bc=25cosA=12,b=3,c=4或c=3,b=4
故81-a2=$\frac{18}{5}×25$cosA,解得a=3.
三角形是等腰三角形.
故选:A.

点评 本题考查余弦定理以及正弦定理的应用,三角形的形状的判断,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别是a,b,c
(1)若满足a=3,A=45°的△ABC有两个,求b的范围;
(2)若a=4,b+c=5,中线AD=y,AB=x,且y与x有函数关系y=f(x)求f(x)表达式(写明定义域).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若不等式x2+y2≤2所表示的平面区域为M,不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{y≥2x-6}\end{array}\right.$表示的平面区域为N,现随机向区域N内抛一粒豆子,则豆子落在区域M内的概率为(  )
A.$\frac{π}{8}$B.$\frac{π}{9}$C.$\frac{π}{24}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.正四面体A-BCD中,AC与BD所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知集合A={x|x2-ax+3≤0},B={x|1≤log2(x+1)≤2},若A⊆B,则实数a的取值范围是$(-2\sqrt{3},4]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.计算
(1)$\frac{tan10°tan70°}{tan70°-tan10°+tan120°}$    
(2)$\frac{{2cos40°+cos10°(1+\sqrt{3}tan10°)}}{{\sqrt{1+cos10°}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在(2x+$\frac{3}{\root{3}{x}}$)n的展开式中,第3项的二项式系数是第2项的二项式系数的两倍.
(1)求n的值;
(2)求含x的项的系数;
(3)求展开式中系数的最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在Rt△ABC中,C=90°,CD⊥AB于D,则$\frac{C{D}^{4}+A{B}^{4}}{C{A}^{4}+C{B}^{4}}$的取值范围为$(1,\frac{17}{8})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)为偶函数,g(x)为奇函数,且满足f(x)+g(x)=$\frac{1}{x-1}$,则f(x)=$\frac{1}{{x}^{2}-1}$.

查看答案和解析>>

同步练习册答案