精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn , 若点 在函数f(x)=﹣x+c的图象上运动,其中c是与x无关的常数,且a1=3.
(1)求数列{an}的通项公式;
(2)记 ,求数列{bn}的前n项和Tn的最小值.

【答案】
(1)解:点 在函数f(x)=﹣x+c的图象上运动,则 =﹣n+c,

则Sn=﹣n2+cn,

由a1=3,则a1=﹣1+c,c=4,

∴Sn=﹣n2+4n,

当n≥2时,an=Sn﹣Sn1=(﹣n2+4n)﹣[﹣(n﹣1)2+4(n﹣1)]=﹣2n+5,

当n=1时,满足上式,

∴数列{an}的通项公式an=﹣2n+5


(2)解: =﹣2an+5=﹣2(﹣2n+5)+5=4n﹣5,

∴数列{bn}为等差数列,

则数列{bn}的前n项和Tn= =2n2﹣3n,

则当n=1时,Tn取最小值,最小值为T1=﹣1,

∴数列{bn}的前n项和Tn的最小值﹣1


【解析】(1)将An代入直线方程,则Sn=﹣n2+cn,由a1=3,即可求得c的值,由an=Sn﹣Sn1 , 即可求得数列{an}的通项公式;(2)由(1)即可求得数列{bn}的通项公式,根据等差数列的前n项和公式,即可求得Tn , 根据二次函数的性质,即可求得数列{bn}的前n项和Tn的最小值.
【考点精析】利用数列的前n项和对题目进行判断即可得到答案,需要熟知数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有三张卡片分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3每次抽取1将抽取的卡片上的数字依次记为abc.求:

(1)“抽取的卡片上的数字满足abc”的概率;

(2)“抽取的卡片上的数字abc不完全相同”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 在椭圆C: 上,F为右焦点,PF⊥垂直于x轴,A,B,C,D为椭圆上的四个动点,且AC,BD交于原点O.
(1)求椭圆C的方程;
(2)判断直线l: 与椭圆的位置关系;
(3)设A(x1 , y1),B(x2 , y2)满足 = ,判断kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如下:观察图形,回答下列问题:

(1)这一组的频数、频率分别是多少?

(2)估计这次环保知识竞赛的及格率(60分及以上为及格).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱中,已知分别为的中点,点上,且求证:

(1)直线平面

(2)直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)设.

①若,曲线处的切线过点,求的值;

②若,求在区间上的最大值.

(2)设 两处取得极值,求证: 不同时成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数 的最小值为0,不等式 的解集为 .
(1)求集合
(2)设集合 ,若集合 是集合 的子集,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 是实数,则“ ”是“ ”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案