精英家教网 > 高中数学 > 题目详情
17.已知“a-1<x<a+1”是“x2-6x<0”的充分不必要条件,命题q:方程x2+(a+2)x+1=0有实数根,若p∨q和¬p均为真命题,求实数a的取值范围.

分析 由p∨q和¬p均为真命题,可得p假q真,求出p为真命题的a的范围,取其补集,再求出q为真的a的范围,取交集得答案.

解答 解:由¬p为真命题,知p为假命题,又p∨q为真命题,则q为真命题.
命题p为真,即“a-1<x<a+1”是“x2-6x<0”的充分不必要条件,得到$\left\{\begin{array}{l}{a-1≥0}\\{a+1≤6}\end{array}\right.$,即1≤a≤5,
∴若p为假命题,则a<1或a>5;
命题q为真,即(a+2)2-4≥0,解得:a≤-4或a≥0.
则使p假q真的a的取值范围为(-∞,-4]∪[0,1)∪(5,+∞).

点评 本题考查命题的真假判断与运用,考查了充分必要条件的判定方法,考查复合命题的真假判断,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在△ABC,内角A,B,C的对边分别为a,b,c,若$\frac{cosA-2cosC}{cosB}$=$\frac{2c-a}{b}$,则$\frac{sinC}{sinA}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2)
(1)求证:{an+1+2an}是等比数列
(2)求数列{an}的通项公式
(3)设3nbn=n(3n-an),求|b1|+|b2|+…+|bn|<m对于n∈N*恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{-2{x}^{2}+x,x>0}\\{{x}^{2}-g(x),x<0}\end{array}\right.$是奇函数,则g(-2)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=2an+1(n∈N*)
(1)数列{an+1}是等比数列.
(2)求通项公式an
(3)设bn=n,求{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)分别求出f(2),f($\frac{1}{2}$),f(3),f($\frac{1}{3}$)的值;
(2)根据(1)中所求得的结果,写出f(x)与f($\frac{1}{x}$)之间满足的等式关系,并证明这个等式关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}是公比为2的等比数列,若a1=2.则$\frac{1}{{a}_{1}^{2}}$+$\frac{1}{{a}_{2}^{2}}$+…+$\frac{1}{{a}_{n}^{2}}$=(  )
A.$\frac{1}{3}$(1-$\frac{1}{{2}^{n}}$)B.$\frac{1}{3}$(4n-1)C.$\frac{1}{3}$(1-$\frac{1}{{4}^{n}}$)D.1-$\frac{1}{{4}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,三个内角A,B,C的对边分别为a,b,c,满足sinA+sinB=sinC(cosB+cosA).
(1)证明:△ABC是直角三角形;
(2)如图所示,设圆O过A,B,C三点,c=2,∠BAC=$\frac{π}{6}$,点P位于劣弧$\widehat{AC}$上,求△PAC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数y=$\sqrt{-{x}^{2}+3x+5}$-1的值域.

查看答案和解析>>

同步练习册答案