精英家教网 > 高中数学 > 题目详情
12.不论m取何实数,直线(m+2)x-(m+1)y+m+1=0恒过定点(0,1).

分析 由直线(m+2)x-(m+1)y+m+1=0变形为m(x-y+1)+(2x-y+1)=0,令$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y+1=0}\end{array}\right.$解得即可.

解答 解:由直线(m+2)x-(m+1)y+m+1=0变形为m(x-y+1)+(2x-y+1)=0,
令$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
∴该直线过定点(0,1),
故答案为(0,1).

点评 本题考查了直线系过定点问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若z=(1+i)2,则复数z的模为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知△ABC的直观图是边长为a的等边三角形A1B1C1,那么原三角形的面积为$\frac{\sqrt{6}}{2}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如表.
年份20102011201220132014
时间代号t12345
储蓄存款y(千元)567810
(1)求y关于t的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t-$\stackrel{∧}{a}$;
(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.(回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$t-$\stackrel{∧}{a}$  中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$t)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={x|lnx≥0},B={x|x2≤9},则A∩B=(  )
A.(1,3)B.[1,3]C.[1,+∞]D.[e,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若函数f(x)=x2的定义域为D,其值域为{0,1,2,3,4,5},则这样的函数f(x)有243个.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系中,以坐标原点为极点,x轴为正半轴建立极坐标系,圆C的极坐标方程为ρ=6cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=-3+\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t为参数).
(1)求圆C的直角坐标方程;
(2)求直线l分圆C所得的两弧程度之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|x<-1或x>5},B={x|a≤x<a+4},且B?A,则实数a的取值范围为(  )
A.(-∞,-5)∪(5,+∞)B.(-∞,-5)∪[5,+∞)C.(-∞,-5]∪[5,+∞)D.(-∞,-5]∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.构造一个同时满足下面三个条件的函数实例:y=-|x|(写解析式).
①函数在(-∞,0)上单调递增;  
②函数具有奇偶性;  
③函数有最大值.

查看答案和解析>>

同步练习册答案