分析 由直线(m+2)x-(m+1)y+m+1=0变形为m(x-y+1)+(2x-y+1)=0,令$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y+1=0}\end{array}\right.$解得即可.
解答 解:由直线(m+2)x-(m+1)y+m+1=0变形为m(x-y+1)+(2x-y+1)=0,
令$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,
∴该直线过定点(0,1),
故答案为(0,1).
点评 本题考查了直线系过定点问题,属于基础题.
科目:高中数学 来源: 题型:解答题
| 年份 | 2010 | 2011 | 2012 | 2013 | 2014 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 储蓄存款y(千元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-5)∪(5,+∞) | B. | (-∞,-5)∪[5,+∞) | C. | (-∞,-5]∪[5,+∞) | D. | (-∞,-5]∪(5,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com