精英家教网 > 高中数学 > 题目详情
4.在直角坐标系中,以坐标原点为极点,x轴为正半轴建立极坐标系,圆C的极坐标方程为ρ=6cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{1}{2}t}\\{y=-3+\frac{\sqrt{3}}{2}t}\end{array}\right.$ (t为参数).
(1)求圆C的直角坐标方程;
(2)求直线l分圆C所得的两弧程度之比.

分析 (1)圆的极坐标方程ρ=6cosθ可化为ρ2=6ρcosθ,利用极坐标公式,化为普通方程;
(2)求出圆心到直线的距离,可得直线 l圆截得的弦所对的圆心角,即可得出结论.

解答 解:(1)圆的极坐标方程ρ=6cosθ可化为ρ2=6ρcosθ,
利用极坐标公式,化为普通方程是x2+y2=6x,即(x-3)2+y2=9.
(2)圆C的方程为(x-3)2+y=9,圆心C为(3,0),半径r=3,
直线l的方程为y+3=$\sqrt{3}(x-3)$,即$\sqrt{3}x-y-3\sqrt{3}-3=0$,
圆心到直线的距离d=$\frac{|3\sqrt{3}-3\sqrt{3}-3|}{\sqrt{1+3}}$=$\frac{3}{2}$,
∴直线 l圆截得的弦所对的圆心角为120°,直线l将圆C分成弧长之比为1:2的两段圆弧.

点评 本题考查极坐标方程与直角坐标方程的互化,考查直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.解关于x方程sin(4x+$\frac{π}{3}$)-4sin(2x-$\frac{5π}{6}$)+cos(2x+$\frac{π}{6}$)+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列{an}满足a1=1且an+1-an=n+1(n∈N*),则数列{$\frac{1}{{a}_{n}}$}的前20项和为(  )
A.$\frac{40}{21}$B.$\frac{41}{20}$C.2D.$\frac{43}{20}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不论m取何实数,直线(m+2)x-(m+1)y+m+1=0恒过定点(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知点P在抛物线y2=4x上,那么点P到点Q(2,-1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的横坐标为(  )
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2-4ρcos θ+3=0,θ∈[0,2π).
(1)求C1的直角坐标方程;
(2)曲线C2的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).求C1与C2的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知命题p:?x0∈R,x02+4x0+6<0,则¬p为(  )
A.?x∈R,x02+4x0+6≥0B.?x0∈R,x02+4x0+6>0
C.?x∈R,x02+4x0+6>0D.?x0∈R,x02+4x0+6≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知圆C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),若P是圆C与y轴正半轴的交点,以原点为极点,x轴的正半轴为极轴建立极坐标系,求过点P的圆C的切线的极坐标方程$ρcos(θ-\frac{5π}{6})$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=ax2-lnx在[1,+∞)上是减函数,求实数a的取值范围是a≤0.

查看答案和解析>>

同步练习册答案