精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,求函数上的最大值;
(2)令,若在区间上不单调,求的取值范围;
(3)当时,函数的图象与轴交于两点,且,又的导函数.若正常数满足条件,证明:
(1);(2);(3)详见解析.

试题分析:(1)当时,,求其在上的最大值,先要求出其导函数,然后利用导数的符号,判断函数的单调区间,最后就可求出函数的最大值;(2)函数在区间上不单调,而函数在在区间又是不间断的,则区间上有根且无重根,问题就转化为方程有解的问题,分离参数后又转化为函数的值域问题,这是我们所熟悉的问题;(3)根据有两个实根,可得关于的两个等式,从而消去,再将适当放缩后构造函数,通过判断函数的单调性去求函数的最值从而证明不等式.
试题解析:(1)                                   2分
函数在[,1]是增函数,在[1,2]是减函数,
所以.                                     4分
(2)因为,所以,                  5分
因为在区间上不单调,所以在(0,3)上有实数解,且无重根,
,有=,()            6分
又当时,有重根,                              7分
综上                                                          8分
(3)∵,又有两个实根
,两式相减,得
,                                          10分
于是
.                            11分

要证:,只需证:
只需证:.(*)                                        12分
,∴(*)化为 ,只证即可.  13分
,14分
在(0,1)上单调递增,      15分
,即.∴.  16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,().
(1)求函数的单调区间;
(2)求证:当时,对于任意,总有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在上的函数,其中为常数.
(1)当是函数的一个极值点,求的值;
(2)若函数在区间上是增函数,求实数的取值范围;
(3)当时,若,在处取得最大值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(Ⅰ)求的值;
(Ⅱ)证明:当时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)求的单调区间;
(II)设,若上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若,试讨论的单调性;
(2)若对,总使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是自然对数的底数,若函数的图象始终在轴的上方,则实数的取值范围       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)的定义域为R,对任意,有,且,则f(x)<3x+6的解集为(  )
A.(-1, 1)B.(-1,+C.(-,-1)D.(-,+

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在上的函数,则  (    )
A.既有最大值也有最小值B.既没有最大值,也没有最小值
C.有最大值,但没有最小值D.没有最大值,但有最小值

查看答案和解析>>

同步练习册答案