精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+bx2+cx在x=α与x=β处有两个不同的极值点,设x在点(-1,f(-1))处的切线为l1,其斜率为k1;在点(1,f(1))处的切线为l2,其斜率为k2
(1)若l1⊥l2,|α-β|=
10
3
,求b,c的值;
(2)若α,β∈(-1,1),求k1k2可能取到的最大整数值.
分析:(1)求出函数的导函数,因为两直线垂直得到斜率乘积为-1,即f′(-1)•f′(1)=-1得到一个式子①,因为α和β为方程的两个根,利用根与系数的关系表示出|α-β|,代入条件,可得②,①②联立,即可得到结论;
(2)设f′(x)=3(x-α)(x-β),则k1k2=f′(-1)f′(1)=9(1+α)(1-α)(1+β)(1-β),利用基本不等式,即可得到结论.
解答:解:(1)f′(x)=3x2+2bx+c,又∵l1⊥l2
∴f′(-1)•f′(1)=-1
即(3+2b+c)(3-2b+c)=-1①
∵α,β是3x2+2bx+c=0的两根,∴α+β=-
2b
3
,αβ=
c
3

又∵|α-β|=
10
3
,∴|α-β|2=(α+β)2-4αβ=
4b2
9
-
4c
3
=
10
9

由①②得
c=0
b=±
10
2
c=6
b=±
82
2

(2)设f′(x)=3(x-α)(x-β),则k1k2=f′(-1)f′(1)=9(1+α)(1-α)(1+β)(1-β)≤9(
1+α+1-α
2
)2×(
1+β+1-β
2
)2
=9
当且仅当α=β=0时,等号成立
∵α≠β,∴k1k2≤8
α=0,β=
1
3
时,k1k2=9×
4
3
×
2
3
=8
即f(x)=x3-
1
2
x2
时,k1k2=8
∴k1k2可能取到的最大整数值为8.
点评:本题考查学生利用导数研究函数极值的能力,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案