分析 设BD的中点为O,连结AO,CO,则∠AOC为二面角B-AC-D的平面角,即∠AOC=60°,由此解三角形能求出结果.
解答
解:如图,设BD的中点为O,
连结AO,CO,则∠AOC为二面角A-BD-C的平面角,
∴∠AOC=60°,
∵正方形ABCD的边长为1,
∴AO=CO=$\frac{\sqrt{2}}{2}$,
∴AC=$\sqrt{{AO}^{2}+{CO}^{2}-2AO•OCcos60°}$=$\sqrt{(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}-2×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}×\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.
此时AC的长度为:$\frac{\sqrt{2}}{2}$.
点评 本题考查线段长的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 8 | C. | $\frac{8}{7}$ | D. | $\frac{4}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com