精英家教网 > 高中数学 > 题目详情
13.将一张边长为1的正方形纸片ABCD沿对角线BD折起,使这两个直角三角形所成的二面角为60°,求此时AC的长度.

分析 设BD的中点为O,连结AO,CO,则∠AOC为二面角B-AC-D的平面角,即∠AOC=60°,由此解三角形能求出结果.

解答 解:如图,设BD的中点为O,
连结AO,CO,则∠AOC为二面角A-BD-C的平面角,
∴∠AOC=60°,
∵正方形ABCD的边长为1,
∴AO=CO=$\frac{\sqrt{2}}{2}$,
∴AC=$\sqrt{{AO}^{2}+{CO}^{2}-2AO•OCcos60°}$=$\sqrt{(\frac{\sqrt{2}}{2})^{2}+(\frac{\sqrt{2}}{2})^{2}-2×\frac{\sqrt{2}}{2}×\frac{\sqrt{2}}{2}×\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$.
此时AC的长度为:$\frac{\sqrt{2}}{2}$.

点评 本题考查线段长的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-$\sqrt{3}$sin2x+sinxcosx+$\frac{{\sqrt{3}}}{2}$,x∈[0,$\frac{π}{2}$]
(1)求函数f(x)的值域;  
(2)若f($\frac{α}{2}$)=$\frac{1}{4}$,α∈(0,π),求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…-$\frac{{x}^{2014}}{2014}$+$\frac{{x}^{2015}}{2015}$=cos2x在区间[-3,3]上的零点的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合P={(x,y)|y2≤x,x,y∈R},Q={(x,y)||x-a|+|y-a+1|≤1,x,y∈R},若P∩Q≠∅,则实数a的最小值为-$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知A,B,C,D四点不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,求证:EFHG是一个平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.化简:$\frac{sin(α-β)}{sinαsinβ}$+$\frac{sin(β-θ)}{sinβsinθ}$+$\frac{sin(θ-α)}{sinθsinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x-(x+1)ln(x+1)
(1)求证:对任意x∈(-1,+∞),f(x)≤0;
(2)证明:当m>n>0,时,(1+m)n<(1+n)m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=cos(πx+φ)(φ>0)的图象如图所示,设P是图象的最高点,A、B是图象与x轴的交点,则tan∠APB=(  )
A.10B.8C.$\frac{8}{7}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.
(Ⅰ)求分数在[120,130)内的频率;
(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.

查看答案和解析>>

同步练习册答案